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῾Ως τοῦ άει` ὄντοσ γνώσεως, ἀλλα` οὐ

τοῦ ποτέ τι γιγνομένου και`

ἀπολλυμένου.

Εὐομολόγητον, ἔφη, τοῦ γα`ρ ἀει`

ὄντοσ ἡ γεωμετρικη` γνῶσίς ἐστιν.

“Geometry is the knowledge of that
which always is, and not of
something which at some time
comes into being and passes away."
“That is readily admitted, for
geometry is the knowledge of the
eternally existent."

Plato, Republic, VII, 527





abstract

Proper holomorphic submersions can be viewed as both generalising holo-
morphic vector bundles and as a way of studying families of smooth projective
varieties. We consider submersions whose fibres are analytically K-semistable,
thus they each admit a degeneration to a Kähler manifold with constant scalar cur-
vature. On such holomorphic submersions, we introduce and study certain canon-
ical relatively Kähler metrics, called optimal symplectic connections, which generalise
Hermite-Einstein connections for vector bundles and are defined as solutions to a
geometric partial differential equation.

Using optimal symplectic connections, we first give a general construction of
extremal metric on the total space, in adiabatic classes, generalising results of
Dervan-Sektnan, Fine, Hong. We then construct an analytic moduli space of holo-
morphic submersions admitting an optimal symplectic connection. To do so, we
develop a deformation theory of holomorphic submersions and we combine tech-
niques from geometric invariant theory with the study of the analytic properties of
the optimal symplectic connection equation. We also show that the moduli space
is a Hausdorff complex space which admits a Weil-Petersson type Kähler metric.
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Introduction

A fundamental result in the study of holomorphic vector bundles is the Hitchin-
Kobayashi correspondence, which establishes an equivalence between the slope-
stability of the vector bundle and the existence of a Hermite-Einstein connection.
While the former is a purely algebro-geometric notion, the latter is a condition in
the form of a geometric PDE involving the curvature of a connection. For vector
bundles over a curve, the Hitchin-Kobayashi correspondence is a classical result of
Narashiman and Seshadri [6161], and it was extended to higher dimensional bases
by Donaldson [1818], Uhlenbeck and Yau [7979], Lübke [5252], Kobayashi [4848].

Both slope stability and Hermite-Einstein metrics can be used to construct
moduli spaces of vector bundles. Seshadri [7171] and Newstead [6262, 6363] gave the
first construction of a moduli space of stable vector bundles over a curve, while
Mumford [5858] introduced semistability in the sense of Geometric Invariant Theory
(GIT) to study this moduli space and established its structure as a global GIT
quotient. Fujiki and Schumacher [2929] later directly constructed the moduli space
of Hermite-Einstein vector bundles over a fixed compact Kähler manifold using
analytic techniques. These moduli spaces remain a central object of study to this
day, and we refer to Greb-Sibley-Toma-Wentworth [3333] for recent work containing
a discussion of analytic and algebraic compactifications.

Motivated by the Hitchin-Kobayashi correspondence, the Yau-Tian-Donaldson
conjecture [8080, 7878, 2121] predicts that an algebro-geometric notion of stability for po-
larised varieties, K-stability, should be equivalent to the existence of Kähler metrics
with constant scalar curvature. While still open in full generality, the conjecture is
known to be true for Fano varieties, due to Chen-Donaldson-Sun [99, 1010, 1111]. The
fact that the existence of constant scalar curvature Kähler (cscK) metrics implies
K-stability is also a theorem of Donaldson [2121], Stoppa [7373] and Berman-Darvas-Lu
[22]. Both K-stability and cscKmetrics lead to the existence ofmoduli spaces. An an-
alytic moduli space of constant scalar curvature Kähler manifolds was constructed
by Fujiki and Schumacher [3131] in the discrete automorphism case, and extended
by Dervan and Naumann in the presence of automorphisms [1313] and by Inoue [4545]
to Fano manifolds with Kähler-Ricci solitons. On the other hand, moduli spaces of
K-stable varieties, known as K-moduli, are an active area of research in algebraic
geometry [7575].

Our work falls into the general framework of studying how these two pic-
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tures interact in the context of proper holomorphic submersions. In this thesis,
we focus on the analytic point of view and we study a generalisation of Hermite-
Einstein connections on more general fibrations, called optimal symplectic connec-
tions. Throughout, by a fibration we always mean a proper holomorphic sub-
mersion πX : (X,HX) → (B, L) of a relatively polarised compact Kähler manifold
onto a compact polarised base, and we assume that the fibres of πX are analyti-
cally K-semistable. We explore the implications of having an optimal symplectic
connection on the existence of special Kähler metrics on the total space and we
construct the analytic moduli space of fibrations admitting an optimal symplectic
connection. Indeed, one of the main goals of moduli theory besides parametrising
certain geometric objects is to study their behaviour in families. From this point of
view, our construction of the moduli space of holomorphic submersions is a step
towards understanding how projective varieties vary in families.

The easiest and most instructive case to understand the ingredients involved is
indeed the case of projectivised vector bundles. Hong [3939] related the existence of
a solution to the Hermite-Einstein equation on the vector bundle with the existence
of a Kählermetric with constant scalar curvature on the total space. More precisely,
anyHermitianmetric on the vector bundle induces a fibrewise Fubini-Studymetric
on the projectivisation, and these metrics differ by an automorphism of the fibres.
However, if the Hermitianmetric satisfies theHermite-Einstein condition, then it is
uniquely determined, so that there is a canonical choice of Fubini-Study metric on
the fibres of the projectivisation. This choice allowed Hong to construct constant
scalar curvature Kähler metrics on the total space.

In the more general case of a polarised fibration with constant scalar curva-
ture Kähler fibres, πX : (X,HX) → (B, L), Dervan and Sektnan [1414] introduced
optimal symplectic connections as analogous to the Hermite-Einstein connections
for projectivised vector bundles. A relatively symplectic form ω on X is called a
symplectic connection in the language of symplectic fibrations because it determines
a splitting of the tangent bundle of X into a vertical and a horizontal part, where
the horizontal vector bundle is defined using orthogonality with respect to ω. If
one assumes that the fibres each have a cscKmetric, then these metrics can be used
to construct a relatively cscK metric ω on X, but such an ω is not unique if the
fibres have non-trivial automorphisms. An optimal symplectic connection is then
a canonical choice of ω, defined in terms of a solution to a second-order elliptic
PDE.

We further extend their definition to the following setting. Let (Y,HY) →
(B, L) be a holomorphic submersion and assume that the fibres are analytically K-
semistable, i.e. they each admit a degeneration to a cscK manifold. We assume also
that these degenerations vary holomorphically in B, so that we have a degeneration
(X ,H) → (B, L) × S of (Y,HY) → (B, L) to a fibrewise cscK fibration (X,HX) →
(B, L) parametrised by S ⊆ C. Using a relative version of Ehresmann’s theorem
(Proposition 2.192.19) we take the perspective of varying the complex structure of the
underlying symplectic fibration, from a relatively cscK complex structure I to small
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compatible deformations Js which keep π holomorphic. We say that ω is an optimal
symplectic connection on (Y,HY) if it satisfies the geometric PDE

pE(∆V
(
ΛωB (γ∗FH )) +ΛωBρH

)
+
λ
2
ν � 0. (0.1)

In this expression γ∗FH and ρH are curvature quantities which depend on ω, ν
is a curvature quantity that depends on the infinitesimal change in the complex
structure and λ > 0 is a constant. The left-hand side is a smooth function on Y, and
the map pE is the projection onto the global sections of the vector bundle E → B
of fibrewise holomorphy potentials with respect to the relatively cscK complex
structure of X. The vanishing of the first term is the condition for an optimal
symplectic connection in the sense of [1414], i.e. where all the fibres are cscK, so our
notion generalises their notion.

In the following, we consider only integral Kähler classes, although this is not
essential. Indeed all our results hold if c1(HX) and c1(L) are replaced respectively
by a relative Kähler class and a Kähler class that do not come from holomorphic
line bundles. Moreover, the base B is considered fixed.

Summary of results

Wemake use of optimal symplectic connections to prove the existence of cscK and
extremal metrics on the total space Y in adiabatic classes

c1(HY) + kc1(L) for k � 0.

To this end, we need to be able to choose an appropriatemetric on the basemanifold
as follows. LetMcscK be themoduli space of cscKmanifolds and let q : B→McscK

be the moduli map induced by the central family (X,HX) → B, whose fibres are
cscK. The spaceMcscK can be endowed with a Weil-Petersson type Kähler metric,
and we denote by αWP the pull-back of it via q. This is a smooth semi-positive
(1, 1)-form on B.

We first consider the case where the group of automorphisms of (Y,HY) and of
(B, L)which preserve the map q are discrete. Thus we require that the base admits
a twisted cscK metric with twisting form αWP :

Scal(ωB) −ΛωBαWP � constant .

Theorem 0.1. Assume that the automorphisms of (Y,HY) and of q are discrete. Letω be an
optimal symplectic connection and ωB be a twisted cscK metric with twisting αWP . Then
there exists a constant scalar curvature Kähler metric on Y in the class c1(HY) + kc1(L)
for all k � 0.

If we allow the moduli map q of the central fibration and the total space (Y,HY)
to have automorphisms, the adiabatic limit method produces extremal metrics on
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Introduction

the total space. In this case, we have to modify our hypotheses on ω and ωB as
follows: we require that ωB is twisted extremal, i.e.

Scal(ωB) −ΛωBαWP

is a holomorphy potential on B and that ω is an extremal symplectic connection, i.e.

pE
(
∆V(ΛωB (γ∗FH )) +ΛωBρH

)
+
λ
2
ν

is aholomorphypotential onY. Wealsoneed some technical assumptionswhichwe
will explain in Section 3.5.23.5.2: the group of automorphisms of πY acts equivariantly
on the family X → B × S and the extremal symplectic connection ω is invariant
under the flow of the extremal vector fields.

Theorem0.2. Suppose that (B, L) admits a twisted extremalmetricωB and (Y,HY) admits
an extremal symplectic connection ω. Suppose also that all automorphisms of the moduli
map q lift to (Y,HY). Then there exists an extremal metric on Y in the class c1(HY)+kc1(L)
for all k � 0.

Our results generalise previous works by many authors who consider more
special situations: we already mentioned Hong’s paper [3939] about cscK metrics on
the projectivisation of stable holomorphic vector bundles, in the case of a discrete
group of automorphisms. In the presence of automorphisms of the vector bundle,
Brönnle [77] proved the existence of extremalmetrics on theprojectivisation of vector
bundles given as direct sums of stable bundles. Fine [2424] proved the existence of
cscK metrics on the total space of a fibration where all the fibres and the base are
Riemann surfaces of genus g ≥ 2. In this case, the choice of a relatively Kähler
metric on the total space falls naturally on the hyperbolic metric, and the optimal
symplectic connection condition is vacuous. Dervan and Sektnan [1414] proved
that the optimal symplectic connection condition reduces to the Hermite-Einstein
condition on projectivised vector bundles, thus being a genuine generalisation.
Moreover, they prove Theorem 0.10.1 and Theorem 0.20.2 in the case of a relatively cscK
fibration. Similarly, McCarthy [5555] proved that on isotrivial fibrations, the optimal
symplectic connection condition becomes the Hermite-Yang-Mills condition on an
associated principal bundle.

The proof of Theorems 0.10.1 and 0.20.2 is carried out using the adiabatic limit tech-
nique, a strategy which originates in Kähler geometry in the work of Fine [2424]. It
consists of expanding the scalar curvature of ω + kωB in inverse powers of k, with
the idea that if k is large the base becomes very large and the curvature is con-
centrated in the vertical direction. In the easiest case of discrete automorphisms,
the optimal symplectic connection condition and the twisted cscK equation on the
base allow one to find a relatively Kähler metric which is constant to order k−1.
Then one proceeds inductively, adding at each step r a potential i∂∂̄ϕr in order
to make the scalar curvature constant up to the k−r−1-term. The implicit function
theorem then allows one to deform the approximate solution to a genuine solution.
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Our approach is a version of the one just described, except with two parameters.
We consider a degeneration X → B × S of the fibration Y → B to the relatively
cscK fibration X → B and we expand the scalar curvature of the Kähler metric
(ω+ kωB , Js) in inverse powers of k and powers of s. Then we relate the parameters
k and s by imposing λk−1 � s, for some λ > 0.

Our notion of an optimal symplectic connection on a relatively K-semistable
fibration should be the most general condition to ask in order to produce cscK or
extremal metrics in adiabatic classes, provided all data is smooth and the afore-
mentioned hypotheses on the lifting of the automorphism groups hold.

Allowing K-semistable fibres is essential for the construction of the moduli
space of fibrations with an optimal symplectic connection. Indeed, when deform-
ing a fibration with cscK fibres, one cannot expect that the fibres remain cscK.
Analytic K-semistability, on the other hand, is an open condition, and this allows
us to study the local behaviour of families of fibrations with an optimal symplectic
connection. We prove the following result.

Theorem 0.3. There exists a moduli spaceM that parametrises holomorphic submersions
over a fixed base, with discrete relative automorphism group and which admit an optimal
symplectic connection. The spaceM is a Hausdorff complex space which carries a Weil-
Petersson type Kähler metric.

We construct the moduli spaceM by gluing local charts around fibrations that
admit an optimal symplectic connection. If (Y,HY) → (B, L) is such a fibration, the
local moduli space around Y is given as the quotient

WY/Aut(πY),

where WY is the complex space of all the deformations of Y that also admit an
optimal symplectic connection, and we quotient by the action of the discrete group
Aut(πY) of relative automorphisms, which is finite.

We explain in somemore detail the definition of WY , which essentially involves
two steps. The first step, explained in §4.14.1, consists of finding a locally closed
analytic space which parametrises all small deformations of the complex structure
of Y that admit a degeneration to a fibration with cscK fibres. To do so, we use
the theory of deformations of cscK manifolds of Székelyhidi [7676] and Brönnle [66]
to develop a theory of deformations of fibrations. More precisely, we prove a
fibration version of Kuranishi’s deformation theorem (Theorem 2.212.21) that allows
us to parametrise the compatible vertical deformations of the complex structure of
X with a complex spaceVπ of harmonic (0, 1)-formswith values in the (1, 0)-vertical
tangent bundle. Working locally in B, we then establish that the deformations of
Y which degenerate to a relatively cscK fibration form a locally closed analytic
subvariety V+

π of Vπ. We explicitly construct the relatively cscK degeneration using
techniques from GIT; although we do not use it directly, our construction is related
to the Byałinicki-Birula decomposition [44, 4646]. This is the key new step in our
construction, not present in other constructions of moduli spaces.

v



Introduction

The second step, which is the topic of §4.24.2, consists of proving that, in a small
open neighbourhood WY of the point associated to Y in V+

π , all fibrations admit an
optimal symplectic connection. The proof of this essentially relies on the implicit
function theorem and employs the linearisation of the equation with respect to the
complex structure. It is here that we use the assumption on the discreteness of the
relative automorphism group.

In the definition of an optimal symplectic connection and in the construction of
the space WY it is essential to assume that the connected component of the identity
of the groups of automorphisms Aut0(Xb ,Hb) of the fibres of the relatively cscK
degeneration are all isomorphic. This assumption is considered to be a smoothness
assumption for our setting and a fixed datum in our construction of the moduli
space.

Outlook

We have presented optimal symplectic connections as canonical choices of rela-
tively Kähler metrics on relatively K-semistable fibrations. To genuinely call them
canonical, optimal symplectic connections should be proven to be unique. In the
relatively cscK case this is a theorem of Dervan, Sektnan [1717] and Hallam [3434].
We expect that uniqueness holds also in the relatively K-semistable case, up to the
action of the group of automorphisms of the projection πY .

While our work concentrates on the analytic aspects of optimal symplectic con-
nections and their moduli space, there are different algebro-geometric notions of
stability that can be defined on fibrations and related to the existence of optimal
symplectic connections. In particular, a fibration version of K-stability was devel-
oped by Dervan, Sektnan [1616] and further studied byHallam [3434]. They prove that,
on projectivised vector bundles, fibration semistability implies slope-semistability
of the vector bundle and that the existence of an optimal symplectic connection
implies stability, thus establishing first results in the direction of generalising the
Hitchin-Kobayashi correspondence. Although they work on fibrations with K-
polystable fibres, their definition of stability also makes sense in the relatively
K-semistable case we treat.

It is natural to ask if it is possible to give an algebro-geometric construction
of the moduli space of fibrations based on stability. Such a construction would
lead to the structure of a variety on the moduli space rather than the structure of a
complex space, and would naturally allow singular fibres. In particular, it would
parametrise certain stable fibrations which degenerate to a fibration whose general
fibre is K-polystable. Moreover, the automorphism group of the general fibre of
the degeneration should be fixed.

Hattori later introduced twodifferent notions of stability: f-stability [3737], related
to Dervan-Sekntan stability of fibrations, and adiabatic K-stability [3737, 3838]. The
latter is a condition defined on a fibration for adiabatic classes and involves also
the K-stability of the base. Hashizume and Hattori [3636] have constructed a moduli
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space of adiabatically K-stable fibrations over a curve where the generic fibre is
Calabi-Yau, using algebro-geometric techniques. In the special case where the
fibres are all smooth, our moduli space constitutes an alternative construction of
Hashizume-Hattori’s moduli space.

In the construction of special Kähler metrics on the total space, open questions
remain in the presence of singularities. In [2525, §9] Fine explains a possible way
to construct special Kähler metrics on the total space of holomorphic Lefschetz
fibrations, where a finite number of fibres are singular, but the problem is still
mostly open. Moreover, a key assumption in Theorem0.20.2 is that all automorphisms
of the moduli map on the base lift to the total space. When this assumption does
not hold, existence results for special Kähler metrics were proved by Hong [4040]
in the case of projectivised vector bundles and extended by Lu-Seyyedali [5151], but
the problem is open on a general fibration, and even for projective bundles sharp
results are not known.

Finally, Sektnan and Spotti [7070] prove a similar result to our Theorem 0.20.2 on
the total space of certain compactified test configurations, where the central fibre
is cscK and the general fibre is just K-semistable. Such a test configuration can be
viewed as a deformation of a compactified product test configuration for the central
fibre. Their proof, however, does not require the extremal symplectic connection
condition but requires that the vector bundle E of relatively cscK metrics is trivial.
It is reasonable to expect that this in fact implies that the extremal symplectic
connection condition is satisfied, thus relating the two constructions.

Outline

We describe briefly the contents of each chapter. In Chapter 11 we give preliminary
definitions and results about Kähler geometry. In particular, in §1.11.1 we collect
some basic properties of the scalar curvature equation and in §1.31.3 we describe the
moment map interpretation of the scalar curvature. Then in §1.41.4 we describe the
relevant definitions and results on deformations of a cscK manifold.

Chapter 22 is a description of the Kähler geometry of holomorphic submersion.
We describe relative Kählermetrics and the curvature quantities they induce. Then
we discuss the notion of an optimal symplectic connection in the relatively cscK
case following [1414] and we extend it to the relatively K-semistable case. In §2.32.3 we
extend the theory of deformations of a cscK manifold to the fibration setting and
we prove a relative version of Kuranishi’s Theorem.

In Chapter 33 we prove the existence of a cscK metric on the total space of
the relatively K-semistable fibration: we derive the optimal symplectic connection
equation by expanding the scalar curvature and we study its linearisation. Then
we use the adiabatic limit strategy to prove the existence of cscK and extremal
metrics on the total space.

In Chapter 44 we construct the moduli space of holomorphic submersions ad-
mitting an optimal symplectic connection. We then describe a Weil-Petersson type
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Kähler metric on the moduli space, along with a natural line bundle.
Chapters 22 and 33 are part of the author’s article [6666]. The results of Chapter 44

are contained in the author’s preprint [6565].
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Notation

Throughout this work, we consider projective Kähler manifolds (M, L), where L is
a fixed ample line bundle. Analogously, we work with fibrations πY : (Y,HY) →
(B, L), where HY is a relatively ample line bundle and by “fibration" we will always
mean a proper holomorphic submersion. Moreover, by “relatively" we refer to a
property that holds fibrewise: for example, a relatively ample line bundle is a line
bundle whose restriction to each fibre is ample, and a relatively Kähler metric is a
closed two-form whose restriction to each fibre is Kähler.

When working in local coordinates we use the Einstein convention on repeated
indexes. In particular, on fibrations, we denote by

{w1 , . . . ,wm} the vertical holomorphic coordinates; indices are denoted with
the letters a , b , c , . . . ;

{z1 , . . . , zn} the holomorphic coordinates on the base; indices are denoted
with the letters i , j, k , . . . ;

{ζ1 , . . . , ζn+m} the holomorphic coordinates on the total space; indices are
denoted with the letters p , q , r, . . . .

We also use the following notation convention:

h0 the space of holomorphic vector fields which admit a holomorphy
potential

h the space of holomorphy potentials

gradω f symplectic gradient of the function f

∇g f Riemannian gradient of the function f

Jπ the space of almost complex structures J on Y compatible with the
relatively symplectic form and such that dπ ◦ J � JB ◦ dπ

Aut(πY) the group of biholomorphisms of Y that lift to HY and preserve the
projection

Kπ the group of fibrewise Hamiltonian isometries that preserve the pro-
jection
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Chapter 1

Background

In this chapter, we describe the theory of special Kähler metrics and of compatible
deformations of the complex structure. We then explain the infinite-dimensional
moment map picture for the scalar curvature and a finite-dimensional reduction
in the case of constant scalar curvature.

We begin by fixing the notation. Throughout, we always work with projective
Kähler manifolds, that is smooth projective varieties endowed with an ample line
bundle and denoted by (M, L). We call the pair (M, L) a polarised Kähler manifold,
and the ample line bundle L a polarisation of M. We consider the polarisation to be
a fixed datum of the various problems we describe.

Let ω be a Kähler form on M in the first Chern class of L and let J be the complex
structure of M. We denote by g � g(ω, J) the Riemannian metric on M induced by
J and ω, i.e.

g(·, ·) � ω(·, J ·).
We will often call either the pair (ω, J) or the Kähler form ω alone a Kähler metric.

Definition 1.1. The Ricci curvature of ω is the two-form

Ric(ω, J) � − i
2π
∂J ∂̄J log ωn .

The scalar curvature of the Kähler metric (ω, J) is a smooth function on M defined
as the contraction of the Ricci curvature:

Scal(ω, J) :� ΛωRic(ω, J).

We are interested in special Kähler metrics, where the scalar curvature is sub-
ject to certain constraints. Among those, we often consider Kähler metrics with
constant scalar curvature, where the constant is given by the intersection product

Ŝ �
n c1(M) · c1(L)n−1

c1(L)n
.

In particular, Ŝ is a topological constant fixed by the polarisation.
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1.1 Extremal Kähler metrics

In this section, we recall some basic definitions and results onKählermanifolds and
the scalar curvature map; we refer to [7777, Chapter 4] for an exhaustive discussion.
Let (M, L) be aKählermanifold and let (ω, J) be aKählermetric. A smooth function
h on M is called a holomorphy potential if the (1, 0)-part of the Riemannian gradient
of h, denoted by ∇1,0

g h, is a holomorphic vector field.

Definition 1.2. A Kähler metric (ω, J) on M is extremal if

∂̄∇1,0
g Scal(ω, J) � 0,

i.e. if its scalar curvature is a holomorphy potential.

In particular, constant scalar curvature metrics are extremal. In the study
of the existence of extremal and cscK metrics, it is essential to understand the
linearisation of the scalar curvature, which can be written in terms of a differential
operator called the Lichnerowicz operator. When linearising the scalar curvature
function, we can either fix the complex structure J and vary the Kähler form ω or
fix ω and vary J. In this section, we consider the complex structure J as fixed, and
we describe the linearisation of Scal(ω, J)whenwe vary ω in the cohomology class
c1(L). In the next section we will describe the linearisation in the J-variable and
the relation between the two. To avoid any confusion, in this section we write the
scalar curvature as a function of ω alone, Scal(ω). The set of Kähler metrics in the
same Kähler class of ω with respect to J is

KJ(ω) �
{
ω′ ∈ c1(L) | ω′ � ω + i∂J ∂̄Jϕ for some ϕ ∈ C∞(M,R)

}
. (1.1)

Fixing a reference Kähler metric ω ∈ c1(L), we can then describe the linearisation
of Scal(ω) in the direction of a Kähler potential ϕ.

Definition 1.3. LetD : C∞(M,C) → Ω0,1(T1,0M) be the operator

D(ϕ) � ∂̄∇1,0
g ϕ.

TheLichnerowiczoperator is the compositionD∗D, whereD∗ is the adjoint defined
with respect to the L2(g)-inner product.

It can be written explicitly as follows:

D∗D(ϕ) � ∆2
g(ϕ) + 〈Ric(ω), i∂∂̄ϕ〉 + 1

2
〈∇Scal(ω),∇ϕ〉.

The Lichnerowicz operator is a 4th-order elliptic operator. Its kernel, which by
compactness is the kernel of D, coincides with the space of real holomorphy
potentials on M. In particular, it is clear from the definition that ω is an extremal
metric on M if and only if the scalar curvature of ω is in the kernel of D. The

2



1.2 Moment maps and GIT-stability

linearisation of the scalar curvature in the direction of a Kähler potential ϕ can be
written in terms of the Lichnerowicz operator as

−D∗D(ϕ) + 1
2
〈∇Scal(ω),∇ϕ〉.

In particular, the linearisation at a constant scalar curvature metric is given exactly
by the Lichnerowicz operator.

We next describe the linearisation of the scalar curvature at an extremal metric.
We denote by h the space of holomorphy potentials and by h0 the space of holo-
morphic vector fields which admit a holomorphy potential. Solving the extremal
equation means finding a Kähler metric ω such that

Scal(ω) − f � 0

for some holomorphy potential f . If we changeω toω+ i∂∂̄ϕ, then the holomorphy
potential f changes to f + 1

2 〈∇ f ,∇ϕ〉. Therefore, an extremal metric in the Kähler
class of ω is a zero of the operator

C∞(M,R) × h→ C∞(M,R)

(ϕ, h) 7→ Scal(ω + i∂∂̄ϕ) − 1
2
〈∇ f ,∇ϕ〉 − f .

(1.2)

The linearisation G of this operator at a solution is given again by the Lichnerowicz
operator itself: G(ϕ, 0) � −D∗Dϕ.

We end this brief overview of extremal and cscK metrics with a description
of their automorphism group. Let Aut(M, L) be the group of automorphisms of
M which lift to L and let h be its Lie algebra. Let Isom(M, ω) be the group of
holomorphic isometries of the Kähler metric (ω, J) and let k be its Lie algebra. A
well-known result of Matsushima and Lichnerowicz states that when ω is cscK,
the group Aut(M, L) is reductive [5454, 5050].

Theorem 1.4. Suppose that there exists a constant scalar curvature Kähler metric on M.
Then

h0 � k0 ⊕ Jk0.

The above theorem is known as theMatsushima criterion or the Cartan decompo-
sition. For an extensive discussion on the interplay between the existence of special
Kähler metrics and the groups of automorphisms of the complex, Riemannian and
symplectic structure we refer to [3232, §3.4].

1.2 Moment maps and GIT-stability

In this section, we briefly describe the definition of a Hamiltonian action of a
compact Lie group on a symplectic manifold. We explain how moment maps are
used to take a quotient of a symplectic manifold with what is called the symplectic

3
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reduction. We also describe some features of Geometric Invariant Theory (GIT),
which also allows us to take a quotient of a projective variety with respect to the
action of a complex Lie group. The Kempf-Ness Theorem 1.121.12 relates the two
constructions.

1.2.1 Hamiltonian actions

Let (M, ω) be a symplectic manifold.

Definition 1.5. A vector field η is Hamiltonian with respect to ω if there exists a
function h ∈ C∞(M,R) such that

ω(η, ·) � −dh.

We say that h is the Hamiltonian function of η.

On a Kähler manifold η � J∇g(h), where ∇g h is the Riemannian gradient of h.
A Hamiltonian vector field with Hamiltonian h is also called the symplectic gradient
of h, and denoted by gradωh.

Let G be a Lie group that acts on M, and assume that the action preserves the
symplectic form, i.e. for any g ∈ G, g∗ω � ω. Let g be the Lie algebra of G. For any
element f ∈ g, the infinitesimal action of f is the vector field

σx( f ) �
d
dt

����
t�0

(
exp(−t f ) · x

)
Definition 1.6. Let G act on (M, ω) bymeans of symplectomorphisms. We say that
the action is Hamiltonian if there exists a moment map

µ : M → g∗

that is equivariant with respect to the G-action on M and the co-adjoint G-action
on the dual Lie algebra g∗ and such that for each x ∈ M

dx 〈µ, f 〉 � ω(−, σx( f )),

i.e. 〈µ, f 〉 is a Hamiltonian function for the vector field σx( f ) on M.

It is clear from the definition of a Hamiltonian vector field that the Hamilto-
nian function is only unique up to a constant. The moment map then chooses a
Hamiltonian function for the infinitesimal vector field.

An important feature of Hamiltonian actions is that they allow us to take a
symplectic quotient of a projective manifold. Assume that K is a compact Lie
group that acts on M and that the action is Hamiltonian. Since the moment map
is equivariant, its level sets that are preserved by the co-adjoint action are also
preserved by the group action. Moreover, the origin of k∗ is always fixed by the
coadjoint action.
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The symplectic quotient is defined as

µ−1(0)/K.

This orbit space was first considered by Marsden and Weinstein [5353] and Meyer
[5757]. In fact, it is a theorem of Marsden andWeinstein that if the action on µ−1(0) is
free and proper the symplectic quotient carries a symplectic form. More generally,
there is a stratified symplectic structure on µ−1(0)/K [7272] such that each leaf is a
smooth symplectic manifold. The symplectic quotient is also called the symplectic
reduction of M by the action of K, and denoted by M �red K.

1.2.2 Geometric Invariant Theory

In this section, we briefly review some basic notions in Geometric Invariant Theory
(GIT). We refer to the books of Mumford-Fogarty-Kirwan [5959] and of Newstead
[6363] for extensive discussions and details. The main goal of Geometric Invariant
Theory that we describe is to take a geometric quotient of a projective variety M
with respect the action of a complex Lie group G, such that the quotient is again a
projective variety. To do so, GIT introduces a notion of stability for the points of M
and defines a quotient of stable orbits.

Let M ⊆ CPd be a smooth projective variety. Let G be a complex reductive Lie
group acting on M as a subgroup of SL(d + 1,C), so that the projective embedding
of M is G-equivariant. In particular, the action of G on CPd lifts to an action on the
line bundle O(−1) and it restricts to an action on the affine cone M̂ of M. This lift
of the action is called a linearisation of the action, and it determines the definition
of stability and of the GIT quotient, as we now explain.

Let IM be the homogeneous ideal of C[z0 , . . . , zd] defining M. Then the homo-
geneous coordinate ring of M is the graded ring

R(M) � C[z0 , . . . , zd]/IM �

⊕
r

H0(M,OM(r)).

Let R(M)G be the graded ring of G-invariant sections

R(M)G �

⊕
r

H0(M,OM(r))G .

Nagata’s theorem [6060] (see also [6363, Theorem 3.4]) guarantees that, since G is
reductive, R(M)G is finitely generated. The GIT quotient of M by G is defined as

M � G :� Proj R(M)G .

To understand the definition more geometrically, we introduce the notion of GIT
stability.

Definition 1.7. Let x ∈ M and x̂ ∈ OM(1) be a lift of x. We say that is
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1. semistable if there exists a non-constant G-invariant homogeneous section s in
H0(M,OM(r))G such that s(x) , 0;

2. polystable if it is semistable and the orbit G · x̂ is closed;

3. stable if it is semistable, its stabiliser is finite and the orbit G · x̂ is closed.

A point that is not semistable is called unstable. The set of semistable points is
denoted by Mss .

In particular, the GIT quotient is the image of M under the birational map

M d P
(
H0(M,OM(r))G

)∗
for r � 0, and semistable points are the ones where the map is actually defined.
We can then view the GIT quotient as parametrising the semistable orbits of the
action of G on M. More precisely, we can think of M � G as the quotient of the
Mss by the equivalence relation that identifies two points if and only if the closures
of their orbits have non-empty intersection. The GIT quotient then may identify
strictly semistable orbits, while it is a geometric quotient on stable orbits. We have
the following uniqueness result for polystable points.

Lemma1.8 ([4343, Corollary 5.13]). LetG be a reductive group acting linearly on M ⊆ CPd

and let x ∈ M be a semistable point. Then the closure of the orbit G · x contains a unique
polystable orbit.

Although we have given all the definitions for a projective variety, we can take
a GIT quotient also of an affine variety [6363, §3] [4343, §4.5, §4.6]. In this case, we
give the following definition of stability that incorporates the choice of a standard
linearisation.

Definition 1.9. Let Ad be an affine space of dimension d and G a reductive affine
group acting on it. Let (z1 , . . . , zd) be a system of coordinates on Ad . The space Ad

can be embedded in the projective space Pd as a coordinate chart with the map

(z1 , . . . , zd) 7→ [1 : z1 : . . . : zd].

Weextend the actionofG to an actiononPd byacting trivially on thefirst coordinate.
Let x ∈ Ad and let x̂ be its image in Pd . We say that x is semistable, polystable or stable
if it is with respect to the trivial linearisation.

In particular, the polynomial P(z) � z0 is a G-invariant homogeneous polyno-
mial that does not vanish at any point of Ad . So every point of Ad is semistable.
Remark 1.10. The fact that every point is semistable holds because we defined the
action on Pd to be trivial on the first homogenous coordinate. In principle, one
can choose to extend the action in a non-trivial way and can still define stability
as above, but unstable points might appear. We do not treat this case here, so we
have included the trivial extension of the action in the definition of stability.
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TheHilbert-Mumford criterion [5959, Theorem 2.1] is a useful way of establishing
the stability of a point by looking at the 1-parameter subgroups of G. If 1-parameter
subgroup ρ(t) : C∗ ⊂ G acts on a point x, then limt→0 ρ(t) · x is a fixed point for the
action of ρ(t), so ρ(t) acts on the line Ox(−1) that x represents. Moreover, ρ(t) acts
on the line by multiplication for ta , where a � a(ρ, x) is the weight of the action.

Theorem 1.11 (Hilbert-Mumford criterion). A point x ∈ M is

1. semistable if and only if a(ρ, x) ≤ 0 for all 1-parameter subgroups ρ(t);

2. polystable if and only if a(ρ, x) ≤ 0 for all 1-parameter subgroups ρ(t) and a(ρ, x) �
0 holds if and only if limt→0 ρ(t) · x does not lie in the orbit G · x;

3. stable if and only if a(ρ, x) < 0 for all 1-parameter subgroups ρ(t).

The GIT quotient is intimately related to the symplectic quotient and the the-
ory of moment maps by the Kempf-Ness theorem [4747], [5959, Theorem 8.3]. Let
(M,OM(1)) be a polarised variety with a Kähler form ω ∈ c1(OM(1)). Let G be a
reductive Lie group acting on M such that the action of G lifts on OM(1). Let K be
a maximal compact subgroup such that the action on M is Hamiltonian.

Theorem 1.12 (Kempf-Ness). There exists a moment map µ for the K-action on M such
that:

1. a G-orbit is semistable if and only if its closure contains a zero of the moment map;
this zero is in the unique polystable orbit in the closure of the semistable orbit;

2. the inclusion of µ−1(0) in Mss induces a homeomorphism

M � G ' µ−1(0)/K.

The Kempf-Ness theorem is one of the first instances of what has become a
guiding principle in the study of many geometric problems, including the one
treated in this thesis, and it serves as a motivation for studying similar problems
in the infinite-dimensional setting. When the group and the variety are infinite-
dimensional, a moment map is often a differential operator, so finding a zero of the
moment map means finding a solution of a geometric PDE. Conversely, proving
that an equation is a moment map for the action of a group is then the first step
towards establishing a relation with an algebro-geometric stability condition.

1.3 Scalar curvature as a moment map

In this section, we focus on the moment map interpretation of the scalar curvature,
due to Fujiki [2828] and Donaldson [1919]. For details and proofs see also [6767, Chapter
1]. Indeed, the scalar curvature function can be viewed as a moment map for the
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action of an infinite-dimensional Lie group on an infinite-dimensional space, as we
now describe.

Let (M, ω) be a symplectic manifold, and consider the infinite-dimensional
space of compatible almost complex structures:

J �
{

J : TM → TM almost complex structure compatible with ω
}
.

The tangent space at a point J is given by

TJJ � {A : TM → TM | JA + AJ � 0 and ω(u ,Av) + ω(Au , v) � 0}.

Fix now J ∈ J integrable complex structure and A ∈ TJJ . Consider the
Riemannian metric g J on M induced by J and ω by g J(·, ·) � ω(·, J ·). Using the
symmetry of g J we have

g J(Au , v) � ω(Au , Jv) � −ω(u ,AJv) � ω(u , JAv) � g J(u ,Av),

so the bilinear form (u , v) 7→ g J(Au , v) is symmetric. Moreover, since AJ + JA � 0,
A maps T1,0M to T0,1M and T0,1M to T1,0M, where the splitting is considered with
respect to J. Since A is real, it is uniquely determined by one of the two restrictions,
and we take A : T0,1 → T1,0. This means that we may identify

TJJ ←→ T0,1
J J �

{
α ∈ Ω0,1(T1,0M) | ω(α(u), v) + ω(u , α(x)) � 0

}
.

Now, if A ∈ TJJ , also JA ∈ TJJ , so J has a complex structure, which we denote
by J. Moreover, it has a Hermitian inner product

〈A, B〉J :�
∫

M
〈A, B〉g J

ωn

n!

and the two combine to give a Kähler form, given at the point J by

ΩJ(A, B) � 〈JA, B〉J .

So J is an infinite-dimensional Kähler manifold. Inside J , we consider the
complex subspace J int of integrable almost complex structures of J . Its tangent
space is given by those α ∈ T0,1

J J such that ∂̄α � 0.
Consider the group of Hamiltonian symplectomorphisms of (M, ω), denoted

by G . This is the infinite-dimensional Lie group of time-one flows of Hamiltonian
vector fields on M, and it acts on J by pull-back:

J ∈J , φ ∈ G φ∗ J :� dφ−1 ◦ J ◦ dφ.

Lemma 1.13. The Lie algebra of G can be identified with the space C∞0 (M) of the smooth
functions on M with ω-average zero.
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Proof. Consider a 1-parameter subgroup {φt} of G . Then φ∗tω � ω. So, denoting
by ηt the vector field which time-one flow is the symplectomorphism φt , we have

Lηtω � 0.

By the Cartan magic formula, dω(ηt , ·) � 0. Therefore, ηt is Hamiltonian vector
field with some Hamiltonian function h. We can assume that h has mean-value
zero in M, as the Hamiltonian function is unique up to a constant. So Lie(G ) �
C∞0 (M). �

The following theorem is due to Fujiki [2828] and Donaldson [1919].

Theorem 1.14. The action of G on J is Hamiltonian with moment map

µ : J −→ Lie(G )∗

J 7−→ Scal(ω, J) − Ŝ.
(1.3)

If J is integrable, Scal(ω, J) is the scalar curvature of the metric g J . Otherwise,
it is the Hermitian scalar curvature of the Chern connection on TM, which is not
the same as the Levi-Civita connection in general. In particular cscK metrics on M
correspond to J ∈J int such that µ(J) � 0. The function Scal(J) − Ŝ is viewed as an
element of C∞0 (M)∗ by identifying Lie(G )∗ with its dual via the L2(ω)-product on
M, i.e.

φ 7→ 〈Scal(ω, J) − Ŝ, φ〉L2 .

We next introduce two operators: the infinitesimal action of G , denoted P, and
the differential of the scalar curvature, denoted Q. Consider the scalar curvature
map with respect to the complex structure:

S : J −→ C∞0 (X)
J 7→ Scal(ω, J) − Ŝ.

(1.4)

For fixed J ∈J , the infinitesimal action of G on J is given by the operator

P : C∞0 (M) −→ TJJ

h 7−→ Lηh J,

where ηh is the Hamiltonian vector field with Hamiltonian function h. Let Q be
the derivative at J of the map (1.41.4), i.e.

Q : TJJ −→ C∞0 (M)
A 7−→ dJS(A).

(1.5)

We next show that the operators P and Q are adjoint and how they are used to
prove that the map (1.41.4) is a moment map. These operators and their properties
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play a central role throughout this work. In particular, the operator P is used also
in §1.3.11.3.1 to define a notion of complexified orbits of the action of the group G on
J , even if G does not admit a genuine complexification. In §1.41.4 we use again the
operator P to describe deformations of cscKmanifolds and a version of Luna’s slice
theorem. We will introduce a relative version of P in §2.3.22.3.2 and we will use it to
describe deformations of holomorphic submersions with a fixed base.

We begin by giving an alternative definition of P.

Lemma 1.15. The operator P can be written as

P(h) � 2J ∂̄η1,0
h + 2J(∂̄η1,0

h ), (1.6)

where ηh is the Hamiltonian vector field with Hamiltonian function h.

Proof. Recall that, by definition of the Lie derivative, for any vector field ξ

(Lηh J)(ξ) � [ηh , Jξ] − J[ηh , ξ].

In coordinates, we write ξ as ξc∂c + ξ d̄∂d̄ , and we have

Lξ J(∂a) � ξ(i∂a)︸︷︷︸
�0

−i∂a(ξ) − J (ξ(∂a))︸ ︷︷ ︸
�0

+J(∂a(ξ)) � −2i
(
∂aξ

d̄
)
∂d̄ ,

and analogously Lξ J(∂b̄) � 2i
(
∂b̄ξ

c ) ∂c . Plugging in the expression for the Hamil-
tonian vector field ηh � ωcd̄∂d̄ h ∂c + ωcd̄∂c h ∂d̄ we obtain

Lηh J(∂a) � −2i∂a(ωcd̄∂c h)∂d̄ ,

Lηh J(∂b̄) � 2i∂b̄(ωcd̄∂d̄ h)∂c .

Thus
Lηh J � 2J∂b̄(ωcd̄∂d̄ h)∂c ⊗ dz̄b

+ 2J∂a(ωcd̄∂c h)∂d̄ ⊗ dza .

On the other hand ∂̄η1,0
h � ∂b̄(ωcd̄∂d̄ h)∂c ⊗ dz̄b , so

Lηh J � 2J ∂̄η1,0
h + 2J ∂̄η1,0

h ,

which proves the statement. �

In light of Lemma 1.151.15, we can and will modify our operator P and consider as
its definition the following:

P : C∞0 (M) −→ T1,0
J J

h 7−→ ∂̄η1,0
h .

(1.7)

Moreover, if J is integrable, JLηh J � L Jηh J, so

∂̄η1,0
h + (∂̄η1,0

h ) � −2JLηh J � −2L Jηh J.
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Remark 1.16. Fix J ∈J integrable complex structure. Let h ∈ C∞0 (M) and ηh be the
associated Hamiltonian vector field. Using the definition of a Hamiltonian vector
field, the Cartan magic formula and the relation ω(Ju , v) + ω(u , Jv) � 0, we have

L Jηhω � d(ω(Jηh , ·)) � −d(ω(ηh , J ·)) � −d(−dh(J ·)) � d(Jdh).

If J is integrable, by writing the expression in local coordinates, we obtain that

L Jηhω � d(Jdh) � −2i∂∂̄h. (1.8)

The fact that (1.31.3) is a moment map means by definition that the L2-inner
product 〈µ(J), φ〉 is a Hamiltonian function for the infinitesimal vector field Lηφ J,
i.e.

d
dt

����
t�0
〈µ, φ〉(Jt) � ΩJ0( ÛJ0 ,Lηφ J0).

By writing the moment map condition in terms of P, Q, for A ∈ TJJ , we obtain
the following relation:

〈Q(A), φ〉L2 � −ΩJ

(
1
2

JP(φ),A
)
� ΩJ

(
A,

1
2

JP(φ)
)
� 〈JA,

1
2

JP(φ)〉J �
1
2
〈A, P(φ)〉J .

Therefore Q∗ � 1
2 P, and conversely P∗ � 2Q. The operators Q and P are thus

adjoint.

Remark 1.17. Let J1 , J2 be two almost complex structures compatible with ω, and
assume that J2 � f ∗ J1 for some f ∈ Diff(M). Denoting by g(Ji , ω), i � 1, 2 the
corresponding Riemannian metrics, we have

g(J2 , ω) � f ∗g(J1 , ( f −1)∗ω).

If moreover f ∈ G , we have that g(J1 , ω) and g(J2 , ω) are isometric.

Let D∗D be the Lichnerowicz operator with respect to the metric g J . Its coor-
dinates expression is [7777, Theorem 4.2]

D∗D(φ) � gdb̄
J gac̄

J ∇d∇a∇c̄∇b̄φ � gdb̄
J gac̄

J ∇a∇d∇c̄∇b̄φ.

We use this expression to relate the operators P and Q. With the following result
we prove that along the direction given by the infinitesimal action of G on J , the
derivative of the scalar curvature S is the real part of the Lichenrowicz operator.

Lemma 1.18 ([2020]). The maps P and Q satisfy the following property:

Q(P(φ)) � Re(D∗Dφ). (1.9)
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Proof. Start by writing Q as the composition of two operators,

Q1 : TJJ ⊂ Ω0,1(T1,0M) → Ω1,0(M)

and
Q2 : Ω1,0(M) → C∞(M).

The operator Q1 is defined as

Q1(α) � Re(∇aα
a
b̄
dz̄b),

for α ∈ T0,1
J J . As for Q2, let θ � θadza ∈ Ω1,0(M). Then

Q2(θ) � −div(Jθ]) � div(i gab̄θa∂b̄)

where θ] is the vector field obtained by θ by raising the index with the metric g.
Moreover, Q2 satisfies the equation

Q2(θ)ωn
� ndθ ∧ ωn−1.

We have that

Q(A) � Q2(Q1(A)) � Q2

(
Re(∇aAa

b̄
dz̄b)

)
� −div

(
JRe(gcb̄∇aAa

b̄
∂c)

)
� −div

(
Re(i gcb̄∇aAa

b̄
∂c)

)
� div

(
Im(gcb̄∇aAa

b̄
∂c)

)
� Im

(
∇c(gcb̄∇aAa

b̄
)
)
.

(1.10)

Let us compose this with the operator

P(φ)1,0 � ∂̄
(
ξφ

)1,0
� ∂c̄

(
ωab̄∂b̄φ

)
dz̄c ⊗ ∂a .

Hence we obtain
Q(P(φ)) � Q

(
∂c̄

(
ωab̄∂b̄φ

)
dz̄c ⊗ ∂a

)
� Q

(
i gab̄ ∇c̄∇b̄φ dz̄c ⊗ ∂a

)
� Im

(
i∇d

(
gdb̄∇a gac̄∇b̄∇c̄φ

))
� Re(D∗Dφ),

as claimed. �

We can compare the linearisation (1.91.9) of the scalar curvature map S, where ω
is fixed, to the linearisation of the scalar curvature map described in §1.11.1, where
the complex structure is fixed and the Kähler potential varies. When (ω, J) has
constant scalar curvature, the linearisation of the scalar curvature coincides with
the Lichenrowich operator, which is real. Thus it coincides with the expression

12



1.3 Scalar curvature as a moment map

(1.91.9). However, in the proof of (1.91.9) we do not use any hypothesis on the scalar
curvature being constant, so when the reference metric g(ω, J) has non-constant
scalar curvature the two linearisations may be different. In the next section, we
will expand on the interplay between fixing the complex structure and varying the
Kähler potential and fixing the symplectic form and varying the complex structure.

1.3.1 Complexified orbits and Kähler potentials

The group G does not admit a formal complexification. Nonetheless, there is a
notion of complexified orbits for the action of G on J , at the infinitesimal level.
These orbits play a role in the interaction between the complex structure and its
deformations and the changes in the Kähler metric within its Kähler class.

Lemma 1.19. Let J ∈J and let OJ be the orbit of J for the action of G . Then

TJOJ �
{

JP(h) | h ∈ C∞0 (M)
}
.

Lemma 1.191.19 is a consequence of Remark 1.151.15, where P is related to the infinites-
imal action of G . In order to define a formal complexification of G , we proceed
by complexifing the tangent space to the orbits. Indeed, we can consider the com-
plexification of the Lie algebra of G , i.e. C∞0 (M,C). Thus we can complexify the
infinitesimal action P to the operator

PC : C∞0 (M,C) −→ TJJ (1.11)

defined as follows: if h � u + iv ∈ C∞0 (M,C), then

PC(h) � P(u) + JP(v).

The complexified infinitesimal action defines for every J ∈J the set

DJ � {(P(h), JP(h)) | h ∈ Lie(G )}.

Lemma 1.20. 1. For every almost complex structure J, DJ is a subset of TJJ , hence
D is a distribution;

2. The distributionD is integrable.

For a proof of this result in the case of J integrable complex structure, see [7878,
Chapter 4].

Definition 1.21. The leaves of the foliation D are defined to be the tangent spaces
to the complexified orbits of G or G c-orbits.

We next explain that the complexified orbits can be interpreted in terms of
Kähler metrics in a fixed Kähler class. Let J be an integrable compatible complex
structure on (M, ω), and consider the spaceKJ(ω) of Kähler potentials in the class
[ω] (1.11.1). The following rather technical proposition of Donaldson [2020, p.17] is the
key property in the interpretation of the relation between G c-orbits and K J(ω). We
will extend it to the setting of fibrations in Proposition 4.54.5.

13
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Proposition 1.22. For every ωφ ∈ KJ(ω) there exist f ∈ Diff0(M) such that f ∗ωφ � ω
and (M, ωφ , J) is isomorphic to (M, ω, f ∗ J).

Proof. Consider J fixed, and pick a Kähler metric in the class [ω]:

ωφ � ω + 2i∂∂̄φ.

Using the relation (1.81.8), a path ωt between ω and ωφ for t ∈ [0, 1] can be written as

ωt � ω + 2it∂∂̄φ � ω − td(Jdφ).

For each t ∈ [0, 1] let ηt be the Hamiltonian vector field

ηt � gradωt Ûφt .

Consider the vector field ξt � Jηt . Then

d
dt
ωt � −d(Jdφ) � −Lξtωt , (1.12)

where the second equality is given again by (1.81.8). Define { ft , t ∈ [0, 1]} to be the
isotopy of the time-dependent vector field ξt , i.e.

d
dt

ft � ξt( ft), f0 � id.

The following result is a standard application of Moser’s trick in symplectic geom-
etry [88, 6.4]: for a smooth family ηt of p-forms

d
dt

f ∗t ηt � f ∗t

(
Lξtηt +

dηt

dt

)
. (1.13)

Applying the relations (1.131.13) and (1.121.12) to ωt lead

d
dt

f ∗t ωt � 0,

which implies that f ∗t ωt � f ∗0ω � ω. Let Jt be the pull-back f ∗t J. Then, for t � 1,
the two Riemannian metrics g(ω, f ∗1 J) and g(ωφ , J) are isometric, hence the Kähler
manifolds (M, ω, f ∗1 J) and (M, ωφ , J) are isomorphic. �

In particular, if we fix J ∈J integrable, from Proposition 1.221.22 we have a map

F :
{
φ ∈ C∞(M,R) | ωφ ∈ KJ(ω)

}
−→J

φ 7−→ Fφ J :� f ∗1 J.
(1.14)

Using again equation (1.131.13), which can be generalised to all tensors, we see that
the differential at 0 of F is given by

d0F( Ûφ) � d
dt

����
t�0

Jt �
d
dt

����
t�0

f ∗t J � Lξt J � L JX Ûφ(ω) J � JLξ Ûφ(ω) J � −
1
2

P( Ûφ).

14



1.4 Deformation theory of cscK metrics

In particular, we have obtained that the differential d0F( Ûφ) lies in the leaf DJ .
This means that a variation of the Kähler form in a given Kähler class for J fixed
corresponds to a variation of the complex structure J in the same G c-orbit, for ω
fixed. In other terms, the G c-orbits of J integrable are in bĳection with the space
KJ(ω) of Kähler metrics in the class [ω].

1.4 Deformation theory of Kähler metrics with constant
scalar curvature

In this section we follow Székelyhidi [7676], although similar results were obtained
also by Brönnle in his PhD thesis [66]. Let (M, L) be a polarised Kähler manifold
and let ω be a fixed Kähler form in c1(L). We fix J ∈ J an integrable complex
structure on (M, ω) such that Scal(ω, J) is constant. In this section, we describe
the deformations of the complex structure J and we explain which deformations
still define a cscK metric. We will use these results in §2.32.3, where we describe the
deformations of families of cscK complex structures.

The deformations of the complex structure are encoded in a complex

C∞0 (M,C) PC→ TJJ
∂̄→ Ω0,1(T1,0M),

where PC is the complexification of the operator P (1.111.11). Let H̃1 be the cohomology
of the complex. Then H̃1 can be described as

H̃1
�

{
α ∈ TJJ | PC∗α � ∂̄α � 0

}
. (1.15)

This is a finite-dimensional vector space since it is the kernel of the elliptic operator

� � PCPC
∗
+ (∂̄∗∂̄)2 (1.16)

on TJJ . Consider the group of Hamiltonian isometries of (M, ω, J), denoted by
K: it is the group of functions ϕ ∈ G such that

dϕ−1 Jdϕ � J.

In particular, the group K is the stabiliser of the complex structure J for the action
of G which means that, by definition, it is the intersection of G with Aut(M, J).
The Lie algebra of K, denoted by k, consists of smooth functions over M such
that their Hamiltonian vector field is also holomorphic, thus it can be identified
with the kernel of P. The group K can be complexified and from Theorem 1.41.4 its
complexification is Aut(M, L).

The map (1.141.14) can be generalised to a map between Sobolev spaces

F : L2
k →J 2

k−2
φ 7→ Fφ(J)
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where J 2
k−2 is the set of almost complex structures on (M, ω) with coefficients in

L2
k−2. This map is K-equivariant, with respect to the natural pull-back action on

L2
k 11.
From Kuranishi [4949], we may construct a holomorphic embedding

Φ1 : V1 →J (1.17)

where V1 ⊂ H̃1 is a ball around the origin. The map Φ1 maps the origin 0 to the
reference complex structure J. The group K acts naturally on H̃1 by pull-back,
and hence on V1, and the map Φ1 is K-equivariant. Moreover, V1 parametrises
G c-orbits of integrable complex structures near J0, in the sense that the G c-orbit of
every integrable complex structure near J0 intersects the image ofΦ1. The following
theorem is mainly due to Kuranishi [4949]. A proof of items 1. and 2. adapted to take
into account the compatibility with the symplectic form can be found in [1212, §6].
The third claim is due to Székelyhidi [7676].

Theorem 1.23. There exists a ball around the origin V ⊂ H̃1 and a K-equivariant map

Φ : V →J (1.18)

such that Φ(0) � J and

1. the G c-orbit of every integrable complex structure near J0 intersects the image of Φ;

2. if two points x and x′ of V are in the same orbit for the complexified action of K, and
Φ(x) is integrable, then their images Φ(x) and Φ(x′) are in the same G c-orbit;

3. Scal(ω,Φ(x)) − Ŝ is an element of the Lie algebra of K.

The open ball V is a local slice of the G c-action near the reference complex
structure J. We will refer to it as the Kuranishi space and to Φ as the Kuranishi
map. Since we allow also non integrable almost complex structure, the slice is an
actual ball. Instead, in the original work by Kuranishi, the set V parametrises only
integrable complex structures, hence it is a complex analytic subspace of our V .
Moreover, while the map Φ1 (1.171.17) is holomorphic, our Kuranishi map Φ (1.181.18) is
not holomorphic in general: this is due to the fact thatΦ is perturbed fromΦ1 using
the implicit function theorem in order to meet the third requirement of Theorem
1.231.23.

Consider the symplectic form on V pulled-back via Φ from the Kähler form Ω
on J . We will denote this symplectic form again by Ω, since it is essentially the
same. Then we obtain a moment map for the K-action on V :

µ : V → k
x 7→ S(ω,Φ(x)) − Ŝ,

(1.19)

1One can see this by using the following relation on the pull-back of a Hamiltonian vector field:
F∗(ξh(ω)) � ξh(F∗ω).
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1.4 Deformation theory of cscK metrics

where k is identified with its dual via the L2-product of functions. So the question
about which deformations of the complex structure J admit a cscK metric can be
restated in terms of finding a KC-orbit which contains a zero of the moment map
µ. We will expand on this in the next section.

Until this point, we have considered deformations of the complex structure
of a fixed symplectic manifold and we have treated them as (0, 1)-forms with
values in the (1, 0)-tangent bundle. Another point of view consists in considering
deformations of themanifold M as a family π :U → T, where π is a smooth proper
morphism and T is a complex space. The simplest example is when T is the double
point Spec C[ε]/ε2. However, if we consider also non integrable deformations, we
can consider T to be an open disk.

Definition 1.24. We say that the deformation family is complete if, for any other
deformation familyU′→ T′, there exists a map

τ : T′→ T

such thatU′ � τ∗U . Moreover, if the differential of τ at 0 is unique we say that the
deformation family is versal, and universal if τ itself is unique.

Ehresmann’s fibration theorem [4444, Theorem 6.2.2] guarantees that the two
points of view are interchangeable.

Theorem 1.25 (Ehresmann). Let π : U → T be a proper family of differentiable mani-
folds. If T is connected, then all the fibres are diffeomorphic.

Throughout this work, we will make extensive use of Ehresmann’s theorem
to view any family of deformations of a given complex manifold as a family of
deformations of its complex structure. In particular Kuranishi’s Theorem [4949]
gives the existence of a versal deformation family centred at M with the complex
structure J and base the Kuranishi space V . Moreover, the Kuranishi deformation
family is complete for nearby complex structures.

1.4.1 Reduction to the finite dimensional problem

In this sectionwe follow Inoue [4545, §3] to compute amomentmap for the linearised
action of K on the tangent space to the Kuranishi space (see also [6464, §3.5]). Such a
computationwill be used in the definition of an optimal symplectic connection and
its linearisation. We then give a proof of a theorem of Székelyhidi [7676] on finding
a KC-orbit in V which contains a zero of the moment map (1.191.19).

On V we have the symplectic form Ω pulled back from the one of J and by
definition the moment map (1.191.19) satisfies

dx 〈µ, f 〉(v) � Ωx(v ,Lη f x),

where x ∈ V is a (0, 1)-form with values in the holomorphic tangent bundle and
η f is the Hamiltonian vector field of f , also denoted by gradω f . We will also use
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the notation σx( f ) for the infinitesimal action given by the Lie derivative of x along
the Hamiltonian vector field associated with f .

The origin of V is a fixed point of the action. By identifying T0V with H̃1, we
consider on H̃1 the linear symplectic form

Ω0(·, ·) � ΩJ0(d0Φ·, d0Φ·), (1.20)

and the linear action of K induced by the one on V . For any f ∈ k, consider the
endomorphism of H̃1

A f (t) � d0
(
y 7→ exp(t f ) · y

)
,

where by exp(t f )we denote the 1-parameter subgroup of K defined by the element
f ∈ k. It corresponds via Φ to the flow of the Hamiltonian vector field η f on M,
which we denote by ρ f

t . The operator A f (t) is a unitary operator, since it is linear
and symplectic, because the group K acts by symplectomorphisms on V . Let

A f :� d
dt

����
t�0

A f (t). (1.21)

We have the following properties:

1. A f is a skew-hermitian endomorphism of (H̃1 , J0) and A f (t) � exp(tA f );

2. For v ∈ H̃1, denote by v a vector field on V such that v |0� v. Then

A f (v) � ∂t |t�0 A f (t)v � ∂t |t�0

(
(ρ f

t )∗(v)
)

0
� −(Lη f v)0 � [v, η f ]0. (1.22)

Definition 1.26. We define a map ν : H̃1 → k by

〈ν(v), f 〉 � 1
2
Ω0(A f v , v).

The map ν can be characterised as a moment map by relating it to the scalar
curvature (1.191.19) as follows [4545, §3]. We begin by computing the second derivative
of the moment map µ, as follows:

d2

dt2

����
t�0
〈µ(tv), f 〉 � d

dt

����
t�0
〈 d
dt
µ(tv), f 〉

�
d
dt

����
t�0
〈dtvµ(v), f 〉

�
d
dt

����
t�0
Ωtv(v ,Lη f (tv))

� Ω0(v ,−A f v)
� 〈ν(v), f 〉.
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1.4 Deformation theory of cscK metrics

In particular, written as a matrix product, the above relation becomes

vᵀ ·Hess0(〈µ, f 〉) · v � −vᵀΩ0A f v ,

hence the matrix Ω0A f is symmetric. Therefore, given a path vt in H̃1 such that
vt�0 � v0 and ∂t |t�0vt � v,

d
dt

����
t�0
〈ν(vt), f 〉 def� d

dt

����
t�0

1
2
Ω0(A f vt , vt)

�
1
2
Ω0(A f v0 , v) +

1
2
Ω0(A f v , v0)

� Ω0(A f v0 , v)
� Ω0(v , (Lη f v)0),

i.e. ν satisfies the moment map condition. The following theorem is due to Széke-
lyhidi [7676]. We present here a proof, which differs slightly from the original and is
more in line with the techniques used in the following chapters.

Theorem 1.27 ([7676]). Let v ∈ V ⊂ H̃1 be a GIT-polystable point for the KC-action on H̃1.
Then there is a point x0 ∈ V in the same KC-orbit as v such that µ(x0) � 0.

Proof. Since v is GIT-polystable for the linearised action, by the Kempf-Ness theo-
rem 1.121.12 there is a zero of the moment map ν in the same KC-orbit of v. Without
loss of generality, we can assume that ν(v) � 0. Hence we have the following
expansion of µ along the path tv for small t:

µ(tv) � µ(0) + td0µ(v) +
t2

2
d2

dt2

����
t�0
µ(tv) + O(t3). (1.23)

By our hypothesis (M, ω, J) is cscK, so µ(0) � 0. Moreover, the differential d0µ(v)
vanishes, since µ is a moment map and the origin is a fixed point of the K-action,
so

µ(tv) � t2

2
ν(v) + O(t3). (1.24)

By the above computation and the polystability of v, the second derivative ν(v)
vanishes. Hence µ(tv) � O(t3).

For any x ∈ V , denote by Kx the stabiliser of x with respect to the K-action, and
by kx its Lie algebra. Then for all f in kx

dx 〈µ( Ûx), f 〉 � Ωx( Ûx , σx( f )) � 0,

where σx : k → TxV is the infinitesimal action. Hence for all x in V , µ(x) belongs
to k⊥x .

Let us now go back to the path xt � tv and consider the map

µt : k` → k`−4

f 7→ µ(exp(i f ) · tv).
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where k` is the W2,`-completion of k. We next wish to apply the implicit function
theorem to the map

µt : (k⊥tv)` → (k⊥tv)`−4.

Let Dµt be the linearisation of µt at the origin. If we show that

1. Dµt is an isomorphism;

2. there exists ε such that ‖µt(0)‖ < ε
‖Dµ−1

t ‖
;

thenwe can conclude that there exists f ∈ (k⊥tv)` such that µt( f ) � 0, i.e. there exists
a zero of the moment map µ in the same KC-orbit as tv. Since µt is elliptic, by
standard elliptic regularity f is smooth.

To prove the first requirement, let us compute Dµt :

Dµt( f ) �
d
ds

����
s�0

µt(s f ) � d
ds

����
s�0

µ
(
exp(is f ) · (tv)

)
� dtvµ ◦ σtv( f ).

For any x ∈ V define Qx � σ∗xσx , where σ∗x denotes the adjoint with respect to the
L2-norm induced by Ω. Then

Qx � dxµ ◦ σx .

Indeed, for f , h ∈ k,

〈Qx( f ), h〉L2(Ω) � Ω
(
σx( f ), σx(h)

)
� dx 〈µ, h〉(σx( f )).

Now Qx : k⊥x → k⊥x is an isomorphism, thus the first requirement follows by taking
x � tv.

To prove the second requirement, we show that there exists δ > 0 such that for
f ∈ k such that ‖ f ‖ < δ,

‖Q−1
t y ‖ < ct−2 , (1.25)

where y � exp(i f ) · v. Indeed, since µt(0) � O
(
t3) , there exists a constant ε′

sufficiently small such that ‖µt(0)‖ < ε′t2. If we prove that (1.251.25) holds, then

‖µt(0)‖‖Q−1
t y ‖ <

(
ε′t2) (

ct−2) < ε′c.
In particular, since Q−1

t y coincides with Dµ−1
t at t y � exp(i f ) · (tv), it follows that

‖µt(0)‖ <
ε

‖Dµ−1
t ‖

,

where ε � ε′c. The proof of the estimate (1.251.25) follows exactly as in [7676, Prop
8] and we report it here for completeness. There is a constant c such that for all
y � exp(i f ) · v with ‖ f ‖ < δ and for all h ∈ k⊥y , we have

‖σy(h)‖2Ω0
≥ c‖h‖2 ,
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1.5 The moduli space of cscK manifolds

whereΩ0 is the metric (1.201.20) on H̃1. If V is sufficiently small, then the metricΩ can
be bounded below by 1

2Ω0. Then, since σt y(h) � tσy(h),

‖σt y(h)‖Ω ≥
1
2

t‖σy(h)‖Ω0 .

It follows that
〈σ∗t yσt y(h), h〉 � ‖σt y(h)‖2Ω ≥

1
4

t2c‖h‖ ,

so ‖Q−1
t y ‖ < ct−2. �

1.5 The moduli space of cscK manifolds

Fujiki and Schumacher [3131] have constructed a moduli space of polarised cscK
manifolds with a discrete group of automorphisms, using the Kuranishi theory
we described in §1.41.4. Dervan, Neumann [1313] and Inoue [4545] extended their result
to the case when the group of automorphisms is not discrete. We conclude this
chapter with a brief discussion of their construction and results, which we will use
in various instances in the following chapters.

Theorem 1.28 ([3131, 1313, 4545]). There is a Hausdorff complex spaceMcscK that parametrises
Kählermanifolds with constant scalar curvature. The spaceMcscK admits aWeil-Petersson
type Kähler metric αWP that represents the first Chern class of a line bundle overMcscK .

In the case of discrete automorphism group, themoduli space is defined locally
around a cscK manifold (M, L) as the Kuranishi space V defined in Theorem
1.231.23 quotient by the action of the group of automorphisms. More precisely, we
consider the complex analytic subspace V int of V of integrable deformations of the
complex structure of M. Fujiki and Schumacher prove that there exists an open
neighbourhood of the origin of V int where the cscK equation has a solution, using
the implicit function theorem and the fact the automorphism group is discrete.
The local structure of the moduli space is then given as the quotient of V int by the
action of Aut(M, L), which is a finite discrete group. In particular, the moduli space
has locally the structure of a complex orbifold space. When (M, L) has continuous
automorphisms, the local structure of the moduli space is instead that of a GIT
quotient V int � Aut(M, L).

We next describe the definition of the Weil-Petersson type Kähler metric on the
moduli space. We start by recalling that the notions of a smooth Hermitian metric
and of a Kähler metric are well posed on a complex space [3131, Definitions 1.1, 1.2].
Let (M, L) be a cscK manifold of complex dimension m and let U → V int be the
Kuranishi family with central fibre (M, L) described with the discussion following
Definition 1.241.24. In particular, U → V int is a family of cscK manifolds. From
Theorem 1.231.23 we get an injective map

d0Φ : T0V int → H0(M, T1,0M). (1.26)
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We use this map to pull-back the standard L2-product on H0(M, T1,0M). More
precisely, let α, β ∈ T0V . Then we can consider α and β as harmonic (0, 1)-forms
with values in T1,0M, where harmonicity is defined with respect to the Laplacian
type operator (1.161.16). Then for each t ∈ V int ,

αt :� 〈α, β〉t �
∫

Mt

Λωt Trωt (αβ̄)ωm
t .

Definition 1.29. The Weil-Petersson metric on V int is the two-form given by the
collection {αt}.

The Weil-Petersson metric satisfies the following fibre-integral formula.

Theorem1.30 ([1313, 3131]). TheWeil-Peterssonmetric onV int coincideswith the (1, 1)-form:

αWP �
Ŝ

m + 1

∫
U/V

ωm+1 −
∫
U/V

ρ ∧ ωm , (1.27)

where Ŝ is the average scalar curvature of M and ρ is the relative Ricci form induced by ω
on the fibres ofU → V :

ρ � i∂∂̄ log(ωm).

To produce an actual Kähler metric on the moduli space, the two-form (1.271.27) is
then glued on the local charts V int �Aut(M, L). Moreover, for any family πX : X →
B of cscK manifolds, a Weil-Petersson type form can be defined by the expression
(1.271.27) as a fibre integral for the fibration πX . More precisely, πX induces a map

q : B→McscK ,

such that the pull-back of theWeil-Peterssonmetric onMcscK via q is a semipositive
closed two-form on B and it can be written as the fibre integral (1.271.27) over X/B.
Moreover, αWP is positive definite if and only if themap (1.261.26) for the family X → B
is an immersion.
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Chapter 2

Holomorphic submersions

Let πX : X → B be a holomorphic submersion between compact Kähler manifolds
whose fibres are all smooth and connected. By Ehresmann’s fibration theorem 1.251.25
the fibres are diffeomorphic. Let n be the dimension of B and m be the dimension
of the fibres, so that dim(X) � n + m.

Definition 2.1. A line bundle HX on the total space X of the submersion πX is said
to be relatively ample if its restrictions to the fibres of πX are ample. Similarly, a
representative ω ∈ c1(HX) is called a relatively Kähler metric if its restrictions to the
fibres of πX are Kähler metrics.

In the following, we always assume that X admits a relatively ample line bundle
HX and B admits an ample line bundle L, andwe consider the line bundles as fixed.
Thus when we write πX : X → B we always mean πX : (X,HX) → (B, L).

Let ω be a relatively Kähler metric on X in c1(HX) and ωB a Kähler metric on B
in c1(L). We can define a Kähler metric on X by taking the relative Kähler metric
ω and adding a large multiple of the base metric, pulled-back on X

ωk � ω + kπ∗XωB k � 0.

We often omit the pull-back and write ω + kωB. The relatively Kähler form ω
determines a splitting of the tangent space

TX �V ⊕Hω (2.1)

whereVx � TxXπX(x) is the tangent space to the fibre, and

Hω
x � {u ∈ TxX | ω(u , v) � 0 ∀v ∈ Vx}

In the context of symplectic fibrationsω is called a symplectic connection [5656, Chapter
6] and the splitting (2.12.1) induces a splitting on all tensor bundles. We denote by ωF
the purely vertical part of ω and by ωH the purely horizontal part of ω.

In what follows will also need the groups of automorphisms of the projections
π.



Holomorphic submersions

Definition 2.2. For πX : X → B the group of relative automorphisms of the fibration,
or the group of automorphisms of π, is

Aut(πX) :�
{

f ∈ Aut(X,HX) | πX ◦ f � πX
}
.

2.1 Splitting of the function space

In this section, we assume that the fibres of X each admits a constant scalar curva-
ture Kähler metric. We also assume that the spaces H0(Xb , T1,0Xb) of holomorphic
vector fields on the fibre Xb are isomorphic as Lie algebras for all b. The following
lemma explains that one can define a relatively Kähler metric on the total space
which is relatively cscK.

Lemma 2.3 ([1414, Lemma 3.8]). For any b ∈ B, let ωb be a cscK metric on the fibre Xb in
the class c1(HX |b). Then there exists a ω ∈ c1(HX) which is relatively cscK.

Denoting by I the complex structure of X, we next explain how the relative
Kähler metric (ω, I) induces a splitting of the space of smooth functions on X. Let

D∗VDV : C∞(X,R) → C∞(X,R)

be the vertical Lichnerowicz operator, defined fibrewise as(
D∗VDVϕ

) ��
Xb

� D∗bDb ϕ
��
Xb
.

It is a real operator since the fibrewise metric is cscK. By integrating a function
ϕ ∈ C∞(X,R) over the fibres of πX , we define a projection

C∞(X,R) −→ C∞(B,R)

ϕ 7−→
∫

X/B
ϕωm .

Its kernel is given by the space C∞0 (X,R) of functions that have fibrewise mean
value zero. A key step in the study of optimal symplectic connections is that we
can further split this space as follows.

Consider a real vector bundle E → B [1414, §3.1], whose fibre over b ∈ B is the
real finite-dimensional vector space ker0(D∗bDb) of holomorphy potentials on the
fibre Xb with mean-value zero with respect to ωb . E is well defined as a vector
bundle since we are assuming that the complex dimension of the Lie algebra h(Xb)
of holomorphic vector fields on Xb is independent of b. Its smooth global sections
are

C∞(E) � ker0D∗VDV .

In [3434, Lemma 2.7], Hallam showed - using the Cartan decomposition for the space
h(Xb) of holomorphic vector fields of the fibre - that Eb can be also viewed as
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2.2 Optimal symplectic connections

the vector space of all Kähler potentials ϕb on Xb of mean-value zero for which
ωb + i∂∂̄ϕb is still cscK. We can split C∞0 (X) as

C∞0 (X,R) � C∞(E) ⊕ C∞(R),

where C∞(R) is the fibrewise L2-orthogonal complement with respect to the fibre
metric ωb , i.e. for all ϕ ∈ ker0D∗bDb , ψ ∈ C∞(R)

〈ϕ, ψ〉b :�
∫

Xb

ϕψωm
b � 0.

In the end, we obtain

C∞(X,R) � C∞(B) ⊕ C∞(E) ⊕ C∞(R). (2.2)

We denote by pE : C∞(X) → C∞(E) the projection.
Since we are interested in deformations of the complex structure of X, some-

times we will denote the vector bundle E as E(ω, I) to underline its dependence
on the Kähler metric. Notice that if we change just the relatively Kähler metric
ω to ω + i∂∂̄ϕ, for ϕ ∈ C∞(X), the vector bundles E(ω, I) and E(ω + i∂∂̄ϕ, I) are
isomorphic. We give the following definition.

Definition 2.4. We denote byKE the space of all smooth functions ϕ ∈ C∞(X) such
that ω + i∂∂̄ϕ is still a fibrewise cscK metric.

The following proposition [1717, Lemma 4.20] relates the space KE to the vector
bundle E→ B, justifying the notation.

Proposition 2.5. Let ϕt : [0, 1] → KE be a smooth path. Then for all t

Ûϕt ∈ C∞(B) ⊕ C∞(E(ω + i∂∂̄ϕt , I))

that is to say that, up to a function on the base, Ûϕt is a fibrewise holomorphy potential with
respect to ω + i∂∂̄ϕt .

Again, if we want to underline the dependence on the complex structure, we
writeKE(I).

2.2 Optimal symplectic connections

In this section, we give the definition of optimal symplectic connection. We begin in
§2.2.12.2.1 by describing optimal symplectic connections on fibrations with cscK fibres,
following Dervan-Sektnan [1414]. In §2.2.22.2.2 we describe a generalisation of optimal
symplectic connection to fibrations with analytically K-semistable fibres.
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2.2.1 The relatively cscK case

Letω ∈ c1(X)be a relativelyKählermetric. Thenω defines two curvature quantities
on X, the symplectic curvature and the relative Ricci curvature.

Definition 2.6. The symplectic curvature of ω is a two-form on B with values in the
fibrewise Hamiltonian vector fields given as follows: if v1 , v2 ∈ X(B),

FH (v1 , v2) � [v]1 , v
]
2]

vert ,

where v]j denotes the horizontal lift.

Let γ∗ be the map which associates to a fibrewise Hamiltonian vector field its
fibrewise Hamiltonian function with fibrewise mean value zero. Thus we consider
γ∗(FH ), which is a two-form on B with values in C∞0 (X,R), and we pull it back on
X. Notice that the two-form γ∗(FH ) depends only on the relatively symplectic form
and not on the complex structure. Moreover, the symplectic curvature is related to
the symplectic connection as follows [1414, §3.2]:

ωH � γ∗(FH ) + π∗Xβ,

where β is a two-form on B.

Definition 2.7. The relatively Kähler form ω induces a Hermitian metric ∧m gω on
the top-wedge power of the vertical tangent bundle∧m

V1,0
� −KX/B .

Explicitly, if A, B ∈ ∧mV1,0, we can write locally A � fA∂w1 ∧ · · · ∧ ∂wm and
B � fB∂w1 ∧ · · · ∧ ∂wm . Then

〈A, B〉∧m gω � det(gω) fA fB .

Its curvature, denoted by ρ, represents the first Chern class of the relative anti-
canonical bundle −KX/B. We call ρ the relative Ricci curvature of ω and we denote
by ρH its purely horizontal part.

We can now give the definition of an optimal symplectic connection according
to [1414].

Definition 2.8. Let ω be a relatively cscK metric. Then ω is an optimal symplectic
connection if

pE
(
∆V(ΛωBγ

∗(FH )) +ΛωBρH
)
� 0. (2.3)

This is a second-order elliptic equation on the vector bundle E → B [1414, Theorem
4.9]. In the following, we will use the notationΘ(ω, I) � ∆V(ΛωBγ

∗(FH ))+ΛωBρH .
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2.2 Optimal symplectic connections

The optimal symplectic connection equation arises from expanding the scalar
curvature of ωk in negative powers of k. Indeed, to leading order the expansion
reads

Scal(ωk) � Ŝb + O
(
k−1) ,

where the leading order term is the scalar curvature of the fibres, whichwe assume
to be constant and is independent of b. The left-hand side of equation (2.32.3) is then
the projection onto C∞(E) of the k−1-term of the expansion. x The linearisation of
the equation at a solution is given by the operator R∗R [1414, §4.3], where

R(ϕE) � ∂̄B∇1,0
V ϕE (2.4)

and the adjoint is computed with respect to the Hermitian metric ωF + ωB. Here
∇1,0
V ϕE is a section of the holomorphic tangent bundle; the vertical part of ∂̄∇1,0

V ϕE
vanishes since ϕ ∈ C∞(E) and the horizontal part is denoted by the expression
(2.42.4). The operator (2.42.4) can be described as follows [1414, §4.3]: let D∗kDk be the
Lichnerowicz operator with respect to the Kähler metric ωk . It can be written as a
power series expansion in negative powers of k:

D∗kDk � L0 + k−1L1 + O
(
k−2) ,

where L0 is the vertical Lichnerowicz operator D∗VDV . Then for ϕ, ψ fibrewise
holomorphy potentials∫

X
ϕL1(ψ)ωm ∧ ωn

B �

∫
X
〈Rϕ,Rψ〉ωF+ωBω

m ∧ ωn
B .

This means that the operator R∗R can actually be seen as pE ◦ L1 restricted to
C∞E (X). The kernel of R, thus of R∗R, consists of fibrewise holomorphy potentials
which are global holomorphy potentials on X with respect to ωk .

2.2.2 Optimal symplectic connections in general

Let now (Y,HY) → (B, L) be a polarised holomorphic submersion with ω ∈ c1(HY)
a relativelyKählermetric.The following assumptions restrict the class of admissible
fibrations to those whose fibres satisfy a stability property defined in terms of K-
stability. More precisely we assume that:

1. the fibres Yb are analytically K-semistable, which means by definition that
they each admit a degeneration to a cscK manifold Xb . We also assume that
the deformation is compatible with the fibration structure in the following
sense: there exists a holomorphic map π̂ : (X ,H) → (B, L) × S, parametrised
by a disk S, such that for s , 0, the family (Xs ,Hs) → B is isomorphic to
the original fibration πY : (Y,HY) → B and the central fibration at s � 0 is a
family πX : (X,HX) → B whose fibres are cscK;

2. the automorphism groups Aut0(Xb ,Hb) of the fibres are all isomorphic.
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The first hypothesis is a stability assumption. We will refer to the submersion
X → B as the relatively cscK degeneration of Y → B. The second hypothesis holds
if and only if the spaces H0(Xb , T1,0Xb) are isomorphic as Lie algebras, which we
assumed in §2.12.1 to define the vector bundle E→ B. It is needed to define optimal
symplectic connections and it is a key hypothesis for the construction of themoduli
space of fibrations in §4.14.1.

A relative version of Ehresmann’s theorem,whichwill be proved as Proposition
2.192.19, implies that we can locally trivialise the family in such a way that all Xs are
diffeomorphic. So we can take the perspective of fixing ω and seeing X → B × S
as a family of compatible complex structures { Js} which keep πX a holomorphic
submersion and are all biholomorphic except for J0.

Let

Jπ �
{

J almost complex structure compatible with ω and s.t. dπ ◦ J � JB ◦ dπ
}
.

(2.5)
Compatibility with ω means that ω(J ·, J ·) � ω(·, ·) and that ωb ◦ J |Xb is non
degenerate and positive definite. The tangent space at I to Jπ can be identified
with

T0,1
I Jπ �

{
A ∈ Ω0,1(V1,0) | ωF(A·, ·) + ωF(·,A·) � 0

}
, (2.6)

where ωF is the purely vertical part of ω.
As in §1.41.4, for any fibre Xb let Vb be the Kuranishi space, Kb the group of

Hamiltonian isometries andΨb the Kuranishi map (1.181.18) of the fibre. Let xs ,b ∈ Vb
be such that Ψb(xs ,b) � Js |Xb . Let µb be the moment map (1.191.19). Then we can
define a section of C∞(E) as

µs(b) � pE
(
ScalXb

(
ωb ,Ψb(xs ,b)

) )
. (2.7)

Note that Ψb may not vary smoothly with b, but when applied to xs ,b it gives the
complex structure Js |Xb . Since Js is a complex structure defined on the whole X,
it varies smoothly with the base, so µs is a smooth section. For each fibre Xb we
can linearise the action to the tangent space to Vb at 0 as in §1.41.4, so we can define
another section ν of E by

ν(b) � νb(vb). (2.8)
Here νb is the moment map defined in Definition 1.261.26 for the linear action of Kb on
H̃1(Xb), and vb ∈ H̃1(Xb) is tangent at 0 ∈ Vb . Even if νb does not necessarily vary
smoothly with b, ν is a smooth section because there is an expansion

µs(b) �
s2

2
ν + O(s3) (2.9)

as explained in Proposition 1.241.24, and µs is smooth.

Definition 2.9. We say that the relative Kähler form ω is an optimal symplectic
connection on (Y,HY) → B if it satisfies the equation

pE
(
∆V(ΛωBγ

∗(FH )) +ΛωBρH
)
+
λ
2
ν � 0 (2.10)
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for some constant λ > 0.

Thefirst term is the left-hand side of the optimal symplectic connection equation
(2.32.3) for fibrewise cscK metrics, and it involves only the complex structure I of the
relatively cscK degeneration. The second term represents the deformation of the
complex structure, in terms of the first-order deformation of the fibres.

Remark 2.10. Similarly to the relatively cscK case, the equation arises by expanding
the scalar curvature of the Kähler metric (ωk , Js) in inverse powers of k and powers
of s and then relating the two parameters to obtain a single expansion. The left-
hand side of (2.102.10) is then the projection onto C∞(E(ω, I)) of the sub-leading order
term of such an expansion. We explain the expansion of the scalar curvature in
detail in §3.13.1.

In §3.33.3, we will prove that the linearisation of the equation at a solution is given
by an operator

L̂ � R∗R +A∗A ,

where R is the operator (2.42.4) and A is obtained by extending the map (1.211.21) to a
fibrewise map. Its kernel is given by the fibrewise I-holomorphy potentials which
are global holomorphy potentials with respect to Js .

The definition of an optimal symplectic connection can be generalised to that
of an extremal symplectic connection as follows.

Definition 2.11. The relative Kähler form ω is an extremal symplectic connection on
Y if

L̂
(
pE(Θ(ω, I)) +

λ
2
ν

)
� 0.

In particular, if ω is an extremal symplectic connection, the fibrewise holomor-
phy potential for the complex structure I

h1 :� pE (Θ(ω, I)) +
λ
2
ν (2.11)

is also a holomorphy potential for the complex structure of Y. The definition of
an extremal symplectic connection extends the one given by Dervan-Sektnan on
relatively cscK fibrations [1414, §3.4].

2.3 Deformations of fibrations

In this section, we study inmore detail the deformations of a holomorphic fibrewise
cscK fibration. In particular, we prove a relative version of Ehresmann’s fibration
theorem in Proposition 2.192.19, which allows us to view families of fibrations as
families of complex structures inJπ on the same underlying smooth fibration. The
main result of this section is a relative version of Kuranishi’s Theorem 1.231.23, which
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will be needed to describe the linearisation of the optimal symplectic connection
equation (2.102.10) and to study the moduli space of its solutions.

We start by giving a description in local coordinates of a first-order deformation
A ∈ TIJπ. In local computations, we make the following notational conventions:

{w1 , . . . ,wm} denote vertical holomorphic coordinates; indices are denoted
with the letters a , b , c , . . . ;

{z1 , . . . , zn} denote holomorphic coordinates on the base; indices are denoted
with the letters i , j, k , . . . ;

{ζ1 , . . . , ζn+m} denote holomorphic coordinates on the total space; indices
are denoted with the letters p , q , r, . . . .

We write A ∈ TJJπ locally as

A � Aa
b̄
dw̄b ⊗ ∂wa + Aa

j̄
dz̄ j ⊗ ∂wa ,

since A takes values in the vertical vector fields. The following lemma explains the
relation between Aa

b̄
and Aa

j̄
.

Lemma 2.12. For A ∈ TIJπ we have that:

1. A vanishes on horizontal vector fields;

2. Aa
j̄
� Aa

c̄(ωF)dc̄(ω)d j̄ .

Proof. As for the first claim, if u ∈ V, v ∈ Hω, then

ω(u ,Av) � ωF(u ,Av) � −ωF(Au , v) � 0. (2.12)

Indeed, the first equality comes from the fact that Av is vertical and ω coincides
with ωF on a pair of vertical vector fields. The middle equality follows from the
compatibility of the deformation with the fibrewise symplectic structure (2.62.6). The
last equality follows from the fact that v is horizontal. So Av is horizontal, since
the relation (2.122.12) holds for any u ∈ V; but Av is also vertical. Thus Av � 0. This
proves the first claim.

We prove the second claim. While ∂wa , ∂w̄a are vertical vector fields on X, ∂z j ,
∂z̄ j are not horizontal in general. So we have a splitting

∂z̄ j � ε j̄ + η j̄ with ε j̄ ∈ Hω , η j̄ ∈ V .

Then from ω(∂wa , ε j̄) � 0 it follows that

(ω)ab̄ η
b
j̄
� (ω)a j̄ .

So η j̄ � (ωF)ac̄(ωX)a j̄∂w̄c . Thus we can write the horizontal part of ∂z̄ j as

ε j̄ � ∂z̄ j − (ωF)ac̄(ω)a j̄∂w̄c .
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Since A takes value in the vertical vector fields, A(ε j̄) � 0, so

0 � −Aa
c̄(ωF)dc̄(ω)d j̄∂wa + Aa

j̄
∂wa ,

hence the claim. �

The following lemma explains the relation between a J ∈Jπ and the splitting
(2.12.1) of the tangent bundle of X induced by ω, by showing that the elements of Jπ

in a neighborhood of I differ from I only on the vertical vector bundle.

Lemma 2.13. Any J ∈ Jπ preserves the splitting of the tangent space TX � V ⊕ Hω.
Moreover, J(u) � I(u) for all u ∈ Hω.

Proof. For the first fact to hold, we have to prove that J(V) ⊆ V and J(Hω) ⊆ Hω.

1. Let v ∈ V. Then
dπ(Jv) � JB(dπ(v)︸︷︷︸

�0

) � 0,

so Jv ∈ V.

2. Let u ∈ Hω. Then ω(u , v) � 0 for every v ∈ V. So

ω(Ju , v) � −ω(u , Jv) � 0,

since Jv is vertical by the previous step.

We now prove that indeed J(u) � I(u) for all J ∈ Jπ and all u ∈ Hω. Consider
for instance a first order deformation I + εA. Since A vanishes on horizontal vector
fields by Lemma 2.122.12, if u ∈ Hω, (I + εA)(u) � I(u). Let now Js be a path in Jπ

which joins I to J. Then
∂s Js(Hω) � As(Hω) � 0,

so for all s we have Js(u) � I(u), for all u ∈ Hω, from which the claim follows. �

In particular, the last part of the proof shows that the horizontal parts of the
operators ∂, ∂̄ with respect to I remain the same for any J in Jπ.

Remark 2.14. Let k � 0 be such that ω + kωB is a Kähler form on X. Then Jπ

embeds into J (ω + kωB). Indeed for J ∈Jπ

ωk(J ·, J ·) � ω(J ·, J ·) + kπ∗ωB(J ·, J ·)

and π∗ωB(J ·, J ·) � ωB(dπ J·, dπ J ·) � ωB(JBdπ·, JBdπ·) � π∗ωB(·, ·).
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2.3.1 Families of holomorphic submersions

In this section, we give a more rigorous definition of a family of fibrations and we
prove a relative version of Ehresmann’s fibration theorem. Families of fibrations
are in particular families of holomorphic maps, for which a deformation theory
has been developed by Horikawa [4141, 4242], under the assumption that H2(X, TX)
embeds into H2(X, π∗TB).

Definition 2.15. A family of holomorphic submersions onto B with central fibre
X → B is the data of (X , π̂, p , S), where:

1. X , S are complex manifolds;

2. p : X → S and π̂ : X → B × S are proper holomorphic submersions;

3. there is a distinguished point 0 ∈ S such that π̂0 induces π : X → B and
p � pr2 ◦ π̂.

A family of holomorphic maps (X , π̂, p , S) onto B is complete if for any other family
(X′, π̂′, p′, S′) with the same central fibre, there exists a map τ : S′ → S, de-
fined locally on neighbourhoods of the distinguished points, such that the family
(X′, π̂′, p′, S′) can be obtained by (X , π̂, p , S) via pull-back using τ.

In order to parametrise compatible almost complex structures, we need to take
into account that all the fibres admit a relative Kähler metric in the same cohomol-
ogy class as the central fibre (X, ω). Following Schumacher [6969], we introduce the
definition of a polarised family.

Definition 2.16. A polarised family (p :M → S, γ) is a family of compact complex
manifolds with a section γ ∈ Γ(S, R2p∗R) such that γ

��
Mt
∈ H2(Mt ,R) is a Kähler

class. Analogously, a polarised family ofmapsontoB is a family ofmaps (X , π̂, p , S)
with a section γ ∈ Γ(S, R2p∗R) such that γ

��
Xs
∈ H2(Xs ,R) is a relative Kähler class

with respect to the projection π̂s : Xs → B.

The following theorem guarantees that a polarised family exists for a Käh-
ler manifold (M, γ0). In the next section, we will prove an analogous result for
holomorphic submersions.

Theorem 2.17 (Schumacher [6969]). Let (X, γ0) be a Kähler manifold, with λ0 ∈ H2(X,R)
a Kähler class. Let p : X → S be a versal family with central fibre (X, λ0) (which exists by
Kuranishi’s Theorem). Then there exists S′ ⊂ S such that λ0 can be extended to a global
section γ ∈ Γ(S′, R2p∗R), thus (X → S′, γ) is a polarised family.

We conclude this section with a proof of a relative version of Ehresmann’s
fibration theorem [4444, Proposition 6.2.2]. For a smooth proper morphism p : M →
N with N connected, Ehresmann’s fibration theorem says that the fibres of p are
all diffeomorphic, and more precisely that M is locally diffeomorphic to a product.
To generalise it to fibrations, we need the following definition.
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Definition 2.18. Let F : M → N be a smoothmap, u a vector field on M, u′ a vector
field on N . We say that u and u′ are F-related if

F ◦ φt
u′ � φ

t
u ◦ F.

Then we can extend Ehresmann’s theorem 1.251.25 to our setting as follows.

Proposition 2.19 (Relative Ehresmann’s Theorem). Let (X , π̂, p , S) be a family of
holomorphic maps onto B with S connected. Then there exists a diffeomorphism τ : X ∼→
X × S which commutes with the projections to B, i.e.

X X × S

B × S

τ
∼

π̂
π×id

Proof. Up to restricting to a segment, we can assume that S is a small open neigh-
bourhood of the origin in R. We can then consider the vector field u � ∂s , and
view it as a vector field in B × S, denoted by u′. This means that, denoting by
φt

u′ its flow and pr2 : B × S → S the second projection, u′ is pr2-related to u. It
is a consequence of the implicit function theorem that if F : M → N is a smooth
submersion of manifolds, then for any vector field on N there exists a vector field on
M which is F-related to it. Let then v be a vector field on X which is π̂-related to
u′, i.e.

π̂ ◦ φt
v � φt

u′ ◦ π̂.
Then, using p � pr2 ◦ π̂, we obtain

p ◦ φt
v � φt

u ◦ p ,

thus v is p-related to u. Hence we can define a map

τ : X −→ X × S

z 7−→ (φ−t
v (z), p(z)),

which is a diffeomorphism with inverse

(x , s) 7−→ φs
v(x).

Since v is π̂-related to u′, this diffeomorphism commutes with the projections to
B, as required. �

Wecan then formalise the degeneration family of fibrations introduced in §2.2.22.2.2.
Let (X,HX) → (B, L) be a polarised holomorphic submersion with ω ∈ c1(HX) a
relatively Kähler metric. Then we consider the following setting: (X ,H , π̂, p , S) is
a smooth polarised family of maps onto B with central fibration (X,HX) → B, where
we can assume for simplicity that S is a disk in C. In particular, the line bundle
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H on X restricts to a relatively ample line bundle Hs on each fibration Xs → B.
Ehresmann’s theorem implies that we can locally trivialise the family in such a way
that all Xs are diffeomorphic, so we can interpret the family as a family of almost
complex structures { Js} on X which preserve the projection onto B.

Moreover, since (Xs ,Hs) is a small deformationof (X,HX), wehave that c1(HY) �
c1(HX). Then by Moser’s theorem [88, Theorem 7.2] we can assume that ω is rela-
tively Kähler with respect to the complex structures Js , up to modifying (Xs ,Hs)
by a small diffeomorphism. So we can view a familyX → B×S as a family of com-
plex structures on X which keep πX a holomorphic submersion and ω a relatively
Kähler metric.
Remark 2.20. Apossible example of adegeneration family (X ,H , π̂, p , S) is obtained
by assuming that S is one-dimensional and there is an action of C∗ on S × B which
lifts to (X ,H) such that π̂ is C∗-equivariant. It follows that for s , 0 the fibrations
(Xs ,Hs) → B are all biholomorphic. In this context, one can think of the family
(X ,H , π̂, p , S) as a family of test configurations varying holomorphically over B.

2.3.2 Relative Kuranishi’s Theorem

As in the previous section, we consider a holomorphic submersion πX : (X,HX) →
(B, L)with a relative Kähler metric ω and a complex structure I which is fibrewise
cscK. We require a relative version of Székelyhidi’s and Brönnle’s deformation
theory described in §1.41.4. LetJπ the space of compatible almost complex structures
defined in (2.52.5) and TJJπ be its tangent space at a point J. If A ∈ TJJπ also
JA ∈ TJJπ, so Jπ admits an almost complex structure. Consider the map

PV : C∞0 (X,R) −→ T0,1
I Jπ

ϕ 7−→ ∂̄(gradωFϕ)1,0 ,

which is the relative version of the map defined in (1.71.7). Let H̃1
V be the kernel in

T0,1
I Jπ of the operator

�V � PVP∗V + (∂̄∗∂̄)2

inside T0,1
I Jπ. This is an elliptic operator because PVP∗V is trivial in horizontal

directions, where the adjoint is computed with respect to any Kähler metric on X
which restricts to ωF vertically. So its kernel is a finite dimensional vector space
and it can be described as

H̃1
V �

{
α ∈ T0,1

I Jπ | P∗Vα � 0 � ∂̄α
}
.

Fibrewise, �V restricts to the operator (1.161.16) and H̃1
V restricts to the vector space

described in (1.151.15). In particular, H̃1
V depends only on the vertical part of the

metric, ωF.
Consider the smooth fibre bundle K → B whose fibre Kb is the stabiliser of

I |Xb
for the Gb-action. in particular, Kb coincides with the group Isom(Xb , ωb) of
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biholomorphic isometries of the fibre. Thanks to our hypothesis 22, the groups
Kb are finite-dimensional with dimension independent of b. The group of global
sections ofK is

Kπ :� Isom(πX , ω) �
{

f ∈ Aut(X) | f ∗ω � ω and πX ◦ f � πX
}
. (2.13)

We next prove a relative version of Kuranishi Theorem, adapted fromChen-Sun
[1212, §6].

Theorem 2.21 (Relative Kuranishi Theorem). There exists a neighborhood of the origin
Vπ ⊂ H̃1

V and a Kπ-equivariant holomorphic map

Ψ : Vπ →Jπ

such that:

1. Ψ(0) � I;

2. If v1 , v2 ∈ V and v1 |b ∈ KCb · v2 |b for all b, and ifΨ(v1) is integrable, then Ψ(v1)|Xb
is in the same G c

b -orbit as Ψ(v2)|Xb
;

3. For any J ∈Jπ integrable close to I, there exists J′ in the image ofΨ such that, for
all b, J′b is in the same G c

b -orbit as Jb .

Proof. We can identify any J close to I with an element α ∈ T0,1
I Jπ, i.e. with a (0, 1)-

form with values in the vertical holomorphic tangent bundle compatible with ωF.
So we have an embedding from an open subset in T0,1

I Jπ into Jπ:

f :U(T0,1
I Jπ) ↪→Jπ .

Given b ∈ B, we denote by ρb the restriction Jπ → J (Xb). Then fb(α |Xb ) �
ρb ◦ f (α). We define now a new embedding f̂ :U(T0,1

I Jπ) ↪→Jπ as follows:

f̂ (α) �
∫
K/B

g−1 f (g · α)dµK/B(g),

where dµK/B is the fibrewise Haar measure onK → B. Then f̂ is such that

f̂ (k · α) |b� k |b · f̂ (α) |b .

Now, α is an integrable deformation if and only if it satisfies [4444, Lemma 6.1.2]

N(α) � ∂̄α + [α, α] � 0. (2.14)

Note that if α is integrable its restriction to each fibre is also integrable, so equation
(2.142.14) holds also fibrewise. For any b ∈ B, let Hb : T0,1

I Jπ |Xb→ H̃1
b be the
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L2
k-orthogonal projection and let Gb be the Green operator of �b , defined by the

condition
1 � Gb�b + Hb � �bGb + Hb .

Let α be an integrable deformation. A simple computation starting from (2.142.14)
leads to the identity

α |b +Gb ∂̄
∗
b ∂̄b ∂̄

∗
b[α |b , α |b] � Hbα |b .

Then we can define a map

F : B × T0,1
I Jπ → T0,1

I Jπ

(b , α) 7→ α |b +Gb ∂̄
∗
b ∂̄b ∂̄

∗
b[α |b , α |b],

where T0,1
I Jπ is endowed with the Sobolev L2

k-norm. The differential of F in
the second component at the origin is the identity, since Gb ∂̄∗b ∂̄b ∂̄∗b[α |b , α |b] is
quadratic in α. Hence by the implicit function theorem we can locally invert F and
the inverse varies smoothly with b. We consider the inverse restricted to an open
ball in H̃1

V , which we define to be Vπ, and for x ∈ Vπ we denote it by α(x). Thus
we have a family

U :� {α(x) | x ∈ Vπ} ⊂ T0,1
I Jπ , (2.15)

and we can define
Ψ : Vπ →Jπ

x 7→ f̂ (α(x)).
We begin by proving that this map satisfies the required properties. Denoting

U int
� {α(x) | N(α(x)) � 0}

and
U int
V � {α(x) | Nb(α(x) |b) � 0 ∀b ∈ B},

we want to prove that U int is an analytic subset of U. We begin by showing that
U int
V is an analytic subset of U. On each fibre Xb , α(x) |b is integrable if and only if

Hb[α(x) |b , α(x) |b] � 0. Indeed

Nb (α(x) |b) � ∂̄bα(x) |b + [α(x) |b , α(x) |b]
� 2Gb ∂̄

∗
b ∂̄b ∂̄

∗
b [N(α(x) |b), α(x) |b] + H [α(x) |b , α(x) |b] .

(2.16)

The map
B × Vπ → H̃V
(b , v) 7→ Hb[α(x) |b , α(x) |b]

is holomorphic, so U int
V is an analytic subset of U. Then, denoting U

int
the analytic

family given by the Kuranishi Theorem [1212, Lemma 6.1] applied to X, we see that
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2.3 Deformations of fibrations

U int is the intersection of U
int

and U int
V , so it is itself an analytic family. More-

over, when restricted to the fibre Xb , both maps f and F are Kb-equivariant and
holomorphic, so (2) is also proved.

We prove (3). Let Jx � Ψ(x) ∈ Jπ, and fix b ∈ B. Given ξ ∈ Γ(X,V) a vertical
vector field, define

Fξ : X → X
p 7→ expp(ξp , gπ(p)),

where gπ(p) is theRiemannianmetric on thefibreXπ(p)with respect to Jx . Following
[1212, Lemma 6.1], we fix v ∈ Vσ ⊂ Vπ, thought of as a tangent vector at x in Vπ, and
we define a map

Rb :U(L2
k+2(Xb ,C)) → L2

k+2(Xb , TXb)
ϕb 7→ ξb(ϕb , v |b)

such that Rb(0) � 0 and

1. d0Rb(ϕb) � gradωb (Re(ϕb)) + Jv |Xb gradωb (Im(ϕb));

2. F∗
ξb(ϕb ,v |b)

Jx |Xb∈ G c
b · Jx |Xb .

Since this map is defined via the implicit function theorem, the vector field
ξb(ϕb , v |b) varies smoothly with b, thus defining a global vertical vector field on X
(more details about this technique of using the implicit function theorem to prove
smooth dependence on b are given in the proof of Proposition 2.232.23 below). So we
can define a global map

R :U(L2
k+2(X,C)) → L2

k+2(X,V)
ϕ 7→ ξ(ϕ, v) s.t. ξ(ϕ, v) |Xb� ξ(ϕ |b , v |b).

The complex structure F∗
ξ(ϕ,v) Jx on X satisfies the following properties:

1. it is compatible with ω. Indeed

ω(F∗ξ(ϕ,v) Jx ·, ·) + ω(·, F∗ξ(ϕ,v) Jx ·) �
ωF(F∗ξ(ϕ,v) Jx ·, ·) + ωF(·, F∗ξ(ϕ,v) Jx ·) + ωX,H (Jx ·, ·) + ωX,H (·, Jx ·).

The first two terms sum to zero because the complex structure F∗
ξ(ϕ,v) Jx is

fibrewise compatible with the fibrewise Kähler form. The last two terms sum
to zero since Jx ∈Jπ;

2. it preserves π, since the differential commutes with pull-back;

3. it satisfies property 22 above for every b ∈ B.
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Let now α(ϕ, v) be the (0, 1)-form with values in the holomorphic vertical tangent
space which is the pre-image of F∗

ξ(ϕ,v) Jx via Ψ. Then from (2.162.16) it follows that
α(ϕ, v) fibrewise satisfies an elliptic equation of the form

�VT(ϕ, v ,N(α)) � 2∂̄∗V ∂̄V ∂̄
∗
V

[
T(ϕ, v ,N(α)), S(ϕ, v , α)

]
, (2.17)

where T(0, v ,N) � N and S(0, v , α) � α.
Let now J ∈ J int

π be close to I in L2
k . The proof now goes exactly as in [1212,

Lemma 6.1], and we report it here for completeness. Since J is integrable, the
corresponding vector-valued (0, 1)I-form α J satisfies (2.172.17) for all (ϕ, v). Consider
the L2

k-projections

Π1 : L2
k

(
T0,1

I Jπ

)
→ Im(PV), Π2 : L2

k

(
T0,1

I Jπ

)
→ H̃1

V

and consider the map χ :U(L2
k+2(X,C)) × Vσ → Im(PV) × H̃1

V defined by

(ϕ, v) 7→
(
Π1

(
F∗ξ(ϕ,v) Jv

)
,Π2

(
F∗ξ(ϕ,v) Jv

))
.

Remark that if α, β ∈ T0,1
I Jπ satisfy (2.172.17) and they are such that (Π1α,Π2α) �

(Π1β,Π2β), then by ellipticity it follows that α � β. The differential of the map χ is
d(0,0)χ(ϕ, v) � (PV(ϕ), v): it is surjective and the kernel corresponds to fibrewise
holomorphy potentials, so it is finite dimensional fibrewise. Thus again by the
implicit function theorem, there exist (ϕ, v) such that (Π1(α J),Π2(α J)) � χ(ϕ, v),
hence by the ellipticity argument α J � F∗Y(ϕ,v) Jx . �

Remark 2.22 (Versal deformations). The proof of the relative Kuranishi Theorem
guarantees the existence of versal deformations. Recall from Definition 1.241.24 that
deformationX → B×Vπ with central fibre (X, I) is called versal if any other family
X′→ B × V′π (centred at I) is obtained by pullback via a map f : V′π → Vπ, which
might not be unique but whose differential is uniquely determined. This is proven
in the third step of Theorem 2.212.21, where a single complex structure J is considered
instead of a second family { Jt′}. The pullback is given by the exponential map Fξ,
where ξ � ξ(ϕ, v) is uniquely determined by the vector v tangent to the complex
structure J.

Proposition 2.23. Possibly after shrinking Vπ, we can perturb the mapΨ to

Φ : Vπ →Jπ (2.18)

such that
ScalV (ω,Φ(x)) − Ŝb ∈ C∞(E).

Remark that the claim holds fibrewise as a consequence of Theorem 1.231.23, so
we just need to check that the complex structure we find on each fibre Xb varies
smoothly with b. This relies on the fact that the proof involves the implicit function
theorem.
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Proof of Proposition 2.232.23. For every b ∈ B, the Lie algebra of Kb is kb � kerD∗bDb ,
which is exactly the fibre Eb of the vector bundle E defined in §2.12.1. Let Ul be a
small ball around the origin of L2,l(R). Define a map

G : B × Vπ ×Ul → L2,l−4(R)
(b , x , ϕ) 7→ πL2,l−4(R)Scal

(
ωb , Fϕb (Ψ(x) |b)

)
,

where Ψ(x) |b defines an element in Jπ from Theorem 1.231.23, and the map F is
the one defined in (1.141.14). The derivative along the third component of G at 0 of a
function ϕ is given by P∗VPV(ϕ), which is an isomorphism L2,l(R) → L2,l−4(R). By
the implicit function theorem, for every b,Ψ can be perturbed toΦb : Vb →J (Xb)
in such a way that Scal(ωb ,Φb(x)) ∈ kb , and Φb varies smoothly with b. Thus we
find a map

Φ : Vπ →Jπ

such that ScalV(ω,Φ(x)) − Ŝb ∈ C∞(E). �

Let us return now to considering a holomorphic submersion πX : X → B with
a relatively cscK metric (ω, I). By viewing ω as fixed and varying the complex
structure, we consider a family { Js} such that (ω, Js) are relatively Kähler metrics
on X → B. Theorem 2.212.21, together with Proposition 2.232.23, allow us to extend
definition of the sections µs (2.72.7) and ν (2.82.8) of C∞(E) to the following maps.

Definition 2.24. Let µπ be the map

µπ : Vπ → C∞(E, I)
x 7→ ScalV(ω,Φ(x)) − Ŝb

and let νπ be the map
νπ : H̃1 → C∞(E)

v 7→ νπ(v),
where νπ(v) |b� νb(v |Xb ) and νb is the map defined in Definition 1.261.26.

Remark 2.25. If xs ∈ Vπ corresponds to Js via the relative Kuranishi map (2.182.18), we
have that µπ(xs) � µs , where µs ∈ C∞(E) is the section defined in (2.72.7). Similarly,
if v ∈ H̃1

V is the deformation of the family { Js}, then νπ(v) is the section ν ∈ C∞(E)
defined in (2.82.8). By applying Proposition 2.232.23 we can perturb µπ to end up in
C∞(E), so we do not see the projection as in (2.72.7).

From the definition (2.72.7), the perturbation given by Proposition 2.232.23 and the
expansion (2.92.9) of µs ∈ C∞(E) it follows that, if v ∈ H̃1

V is the deformation of the
family { Js},

ScalV(ω, Js) − Ŝb � µπ(xs) �
s2

2
νπ(v) + O

(
s3) . (2.19)

This expansion will be used in §3.13.1, where we derive the optimal symplectic con-
nection equation from an expansion of the scalar curvature.
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Chapter 3

Extremal metrics on the total space

As before, let π̂ : (X ,H) → (B, L) × S be a degeneration of a fibration πY :
(Y,HY) → B with central fibration πX : (X,HX) → B, endowed with a C∗-action on
B × S which lifts to (X ,H). Let ω be a relatively cscK metric on X. As in §2.2.22.2.2,
we can assume that ω is relatively Kähler also on Y. It follows that the general
fibrations Xs → B × {s} are all biholomorphic to Y → B. For k � 0, consider the
Kähler form

ωk � ω + kωB ,

where ωB is a fixed Kähler metric on B. In this chapter, we obtain the optimal
symplectic connection from the expansion of the scalar curvature in powers of k.
We then compute the linearisation of the optimal symplectic operator and we use
optimal symplectic connections to construct constant scalar curvature and extremal
Kähler metrics in the class c1(HY) + kc1(L).

3.1 Expansion of the scalar curvature

In this subsection, we derive an expansion of the scalar curvature Scal(ωk , Js), in
powers of s and inverse powers of k, fromwhichwe deduce the optimal symplectic
connection equation (2.102.10). Recall from [1414, §4.1] that

Scal(ωk , Js) � ScalV(ω, Js) + k−1 (
Scal(ωB) + ∆V(ΛωBωH ) +ΛωBρH

)
+ O

(
k−2) .

Clearly, the k−1 term - denoted Tk−1 - depends on s, so we can write

Tk−1(ωB , ω, Js) � Tk−1(ωB , ω, I) + O(s).

Proposition 3.1. By choosing s2 � λk−1 for λ > 0 and using the expansion (2.192.19) for the
vertical scalar curvature we obtain

Scal(ωk , Js) � Ŝb + k−1
(
ψB + pE(∆V(ΛωBωH ) +ΛωBρH ) +

λ
2
ν(v) + ψR

)
+O

(
k−3/2

)
where:
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1. ψB is a function on the base given by

ψB � Scal(ωB) +
∫

X/B

(
ΛωBρH

)
ωm .

2. ψR ∈ C∞(R, I).

Proof. For the first item, in [1414, §4.1] based on [2626, Lemma 2.3] it is shown that∫
X/B
(ΛωBρH )ωm

� −ΛωBαWP ,

where αWP is the Weil-Petersson metric defined in (1.271.27). Moreover, the k−1-term
depends only on I because the O(s)-part ends up in O

(
k−3/2) . Its expression is

obtained following [1414, §4.2]. �

Thus the optimal symplectic connection equation implies that the C∞(E)-part
of the k−1-term of the expansion of the scalar curvature vanishes. Note that Ŝb is a
topological constant independent of b, since all the fibres are diffeomorphic.
Remark 3.2. For simplicity, we have assumed that all the manifolds involved are
projective varieties. This is not a strictly necessary assumption, as everything could
be carried out in the Kähler case: instead of a relative polarisation on Xs , we fix
a relative Kähler class αs and on the base a Kähler class β. Then the constant Ŝb ,
scalar curvature of the fibres of X � X0, is still independent of b. Indeed locally on
a chart U ⊆ B, X is diffeomorphic to F × U, where (F, αF) is a model fibre. Then
α is isomorphic to the class p∗1αF, where p1 is the projection onto the first factor
F ×U → F, so ∫

Xb

αm
b �

∫
F
αm−1

F · c1(Xb).

Therefore the constant

Ŝb �
c1(Xb) · αm−1

b

αm
b

is independent of b.

3.2 Linearisation of the fibrewise map ν

We restrict our attention to a single fibre, so we consider a manifold (M, ω), where
I is a cscK complex structure and v ∈ H̃1 is a deformation of I. We wish to linearise
the map ν defined in 1.261.26.

Let ϕE ∈ kerR(D∗0D0). Then 1
2∇gϕE is a real holomorphic vector field, where

g is the Riemannian metric induced by ω and I. Let ρ(t) be the flow of the vector
field

ξϕE :� ∇gϕE � −IgradωϕE .
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3.2 Linearisation of the fibrewise map ν

We wish to study how ν(v) changes when changing ω to ρ(t)∗ω, so we must
compute

∂t |t�0 νt(vt) � ∂t |t�0 νt(v) + dvν (∂t |t�0 vt) . (3.1)

In this expression, νt is the moment map for the action of KC defined in 1.261.26
computed with respect to the Kähler form ρ(t)∗ω, and vt � ρ(t)∗v. Remark that
ρ(t) is a 1-parameter group of diffeomorphisms in KC because it is the flow of a
holomorphic vector field that admits a holomorphy potential.

As in §1.41.4, let Φ : V →J be the Kuranishi map (2.182.18) which maps 0 to I, and
H̃1 the deformation space, whichwe identify with the tangent space T0V . Themap
Φ is K-equivariant, hence locally KC-equivariant. In particular

Φ
(
ρ(t)∗x

)
� ρ(t)∗Φ(x) for x ∈ V.

Hence the pair (ω, ρ(t)∗x) corresponds via Φ to a compatible pair (ω, ρ(t)∗Φ(x))
and this also holds for our v ∈ H̃1, which is itself an element of Vπ. We have that

∂t |t�0 ρ(t)∗v �

(
LξϕE

v
)���

0
, (3.2)

where v is a vector field on Vπ such that v |0� v. By abuse of notation, we will
often denote this derivative by LξϕE

v.

Lemma 3.3. For v ∈ H̃1, νt(v) � ν(vt).

Proof. Again, this follows from equivariance. Consider again the moment map
µ(x) � S(ω,Φ(x)) and denote by µt the map

µt : V → k
x 7→ S(ω, ρ(t)∗Φ(x)).

Because Φ and µt are (locally) KC-invariant, and in light of the above computation,
we obtain

S(ω, ρ(t)∗Φ(x)) � S(ω,Φ(ρ(t)∗x)) � µ(ρ(t)∗x) � ρ(t)∗µ(x).

Now let v ∈ T0V � H̃1. Then

µt(sv) � ρ(t)∗µ(sv) � ρ(t)∗
[

s2

2
ν(v) + O(s3)

]
.

But also

µt(sv) � s2

2
νt(v) + O(s3).

Thus νt(v) � ρ(t)∗ν(v) � ν(ρ(t)∗v), as claimed. �
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Using this lemma and equation (3.23.2), the derivative (3.13.1) becomes

∂t |t�0 νt(vt) � 2 dvν
(
LξϕE

v
)
.

Thus using the definition of moment map we can compute the linearisation of the
map ν as follows. Letting ψ ∈ k,

dv 〈ν, ψ〉(LξϕE
v) � Ω0

(
LξϕE

v ,Lηψv
)
,

where ηψ � gradωψ. Recall the linearised infinitesimal action induced by ψ ∈ k
defined in (1.211.21), and denoted Aψ. We showed in (1.221.22) that

Aψv � −
(
Lηψv

)
|0 .

Thus using the definition of Ω0,

dv 〈ν, ψ〉
(
LξϕE

v
)
�

∫
M
〈Id0Φ

(
LξϕE

v
)
, d0Φ

(
Lηψv

)
〉ω ωm

�

∫
M
〈d0Φ

(
LηϕE

v
)
, d0Φ

(
Lηψv

)
〉ω ωm

�

∫
M
〈d0Φ

(
AϕE v

)
, d0Φ

(
Aψv

)
〉ω ωm ,

(3.3)

where 〈·, ·〉ω is the inner product induced by the Riemannian metric g(ω, I).

3.3 Linearisationof theoptimal symplectic connectionequa-
tion

Let us now return to the fibration setting. Letting ϕ, ψ ∈ C∞(E), by applying (3.33.3)
and the fact that the map νπ defined in 2.242.24 is defined fibrewise, we obtain

〈dvνπ(Lξϕv), ψ〉 �
∫

X
〈d0Φ

(
Aϕv

)
, d0Φ

(
Aψv

)
〉ωFω

m
F ∧ ωn

B . (3.4)

Here, the map Aψ acts vertically, because it is induced by the infinitesimal action
of the group of holomorphic isometries of every fibre. By using equation (3.43.4), we
obtain the following result.

Lemma 3.4. Let L̂ be the linearisation of the equation (2.102.10) at a solution, composed with
the projection pE. Then

〈L̂(ϕ), ψ〉 �
∫

X
〈Rϕ,Rψ〉ωF+ωBω

m
F ∧ωn

B +λ

∫
X
〈d0Φ

(
Aϕv

)
, d0Φ

(
Aψv

)
〉ωFω

m
F ∧ωn

B ,

where R is the operator (2.42.4), which gives the linearisation of the optimal symplectic
connection equation at a solution.
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From this expression it follows that L̂ is self adjoint.
We now study the kernel of L̂. Since v is fixed in our setting, we can define the

maps
A : C∞(E) → H̃1

V and A : C∞(E) → T0,1
I Jπ

ψ 7→ Aψv ψ 7→ d0Φ
(
Aψv

)
.

(3.5)

Lemma 3.5. A function ψ ∈ C∞(E) is in the kernel of A if and only if ψ is a fibrewise
holomorphy potential with respect to all Js , i.e. ψ ∈ C∞(E, Js).
Proof. Let ψ ∈ kerA and take xs ∈ Vπ is such that x0 � 0 and Ûx0 � v. Then

0 � Aψ(v) �
d
dt

����
t�0

d0(x 7→ exp(tψ) · x)(v)

�
d
dt

����
t�0

d
ds

����
s�0

exp(tψ) · xs

�
d
ds

����
s�0

d
dt

����
t�0

(
ρηψ (t)

)∗ xs

�
d
ds

����
s�0
Lηψ Jxs .

where by ρηψ (t) we denote the flow of the vertical vector field ηψ � gradωFψ,
and all the equalities hold fibrewise since the Hamiltonian action we consider is a
fibrewise action. So Lηψ Jxs is fibrewise constant, i.e.(

Lηψ Jxs

)
V

�

(
Lηψ J0

)
V

� 0

for all s. This can be rephrased as

∂̄s ,Vηψ � 0

for all s, where ∂̄s ,V is the vertical ∂̄-operator computed with respect to Js . Notice
that ηψ is a real vector field which corresponds (under the isomorphism between
real vector fields and (1, 0)s vector fields) to Js∇1,0

s ,Vψ, where ∇s ,Vψ denotes the
vertical vector field which on each fibre is the Riemannian gradient with respect to
the fibrewise metric induced by (ωF , Js). Since Js is integrable,(

Lηψ Js

)
V

�

(
L Js∇1,0

s ,Vψ
Js

)
V

�

(
JsL∇1,0

s ,Vψ
Js

)
V

� 0,

so ψ is a fibrewise holomorphic potential for Js . �

Proposition 3.6. The kernel of L̂ is given by

kerL̂ �

{
ψ ∈ C∞(E, I) | ∂̄s(∇1,0

s ,Vψ) � 0 ∀s
}
,

i.e. the functions in the kernel are those fibrewise I-holomorphy potentials which are global
holomorphy potentials with respect to all Js .
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Proof. Since Φ is an embedding, d0Φ is injective, so for ψ ∈ C∞(E), ψ ∈ kerL̂ if and
only if ψ ∈ kerR and ψ ∈ kerA.

As seen in §2.2.12.2.1, the kernel of R consists of fibrewise holomorphy potentials
which are also global holomorphy potentials. Thus ψ ∈ C∞(E) lies in kerL̂ if and
only if

∂̄B∇1,0
V ψ � 0 and ∂̄s ,V∇1,0

s ,Vψ � 0.

as shown in Lemma 3.53.5. From these two conditions, and in light of Lemma 2.132.13,
which implies that ∂̄B does not depend on s, we have

∂̄sgradωFψ � ∂̄s ,VgradωFψ + ∂̄BgradωFψ � 0,

as claimed. �

Remark 3.7. In [1717, §4.1] it is explained that the kernel of the operator R is given by
the Lie algebra of the groupAut(πX) of automorphisms of the projection, described
in Definition 2.22.2. In our case, the kernel of the linearisation L̂ is the intersection

ker L̂ � Lie(Aut(πs)) ∩ Lie(Aut(πX)),

where we denote by πX : X → B the central fibration and we view { Js} as a family
of complex structures on the same underlying smooth manifolds, compatible with
the projection and with ω.

We wish to see that L̂ is elliptic as a differential operator on the global sections
of E→ B. Let us splitA in (3.53.5) as the composition of the two operators

A1 : C∞(E) → Γ(V)
ϕ 7→ gradωFϕ

and
A2 : Γ(V) → TIJπ

η 7→ −(Lηv).
To give a local expression, we make use of Riemannian coordinates, and we de-
note again the vertical coordinates with the letters a , b , c , . . . and the horizontal
coordinates with the letters i , j, k , . . . , as in §2.32.3. We have:

(A2(η))ab � −
(
Lηv

) a
b � −ηc∂c va

b − va
c∂bη

c
+ vc

b∂cη
a

(A2(η))aj � (A2(η))ac(ωF)dc(ω)dj

where the second expression follows from Lemma 2.122.12. Thus when ϕ ∈ C∞(E)
and η � ωde

F ∂eϕ∂d ,

(A(ϕ))ab � −va
c∂b(ωcd

F ∂dϕ) + vc
b∂c(ωad

F ∂dϕ) + T1(ϕ)
(A(ϕ))aj � −va

c∂b(ωcd
F ∂dϕ)(ωF)eb(ω)e j + vc

b∂c(ωad
F ∂dϕ)(ωF)eb(ω)e j + T′1(ϕ),
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where T1(ϕ) and T′1(ϕ) are terms involving first order vertical derivatives of ϕ.
Thus we see that A is a second order differential operator, and all the derivatives
of ϕ involved are vertical. The adjoint of A1 is given by

A∗1(η) � div(Iη).

Indeed, we can compute the divergence with respect to any Kähler metric g whose
Kähler form restricts vertically to ωF, and the result depends only on the vertical
part:

〈A1ϕ, η〉L2 �

∫
X

gac ω
ab
F ∂bϕ η

c dVolg �

∫
X
−i gac gab (∇bϕ) ηc dVolg

�

∫
X
−i(∇cϕ) ηc dVolg �

∫
X
ϕ ∇c(iηc) dVolg � 〈ϕ,A∗1η〉L2 .

To compute the adjoint of A2 we make use of the following lemma.

Lemma 3.8. Let w ∈ H̃1
V and let gF be the vertical Riemannian metric induced by (ωF , I).

Then
gF(Lηv , w) � gF(w ,∇v(η)) + gF(vw − wv ,∇η).

The proof of the lemma is obtained by computing the different quantities in
Riemannian coordinates [6868, §4.2].

In light of the lemma, the adjoint to A2 can be formally written as

A∗2(w) � −(∇v)∗w − ∇∗([v , w]).

If w � A(ϕ), the first term is of order 3. So we have:

A∗A(ϕ) � −div
(
I∇∗V(v(Lηϕv)V − (Lηϕv)Vv)

)
+ lower order terms.

From this expression, we see that all the quantities involved are vertical. Thismeans
that, as an operator on the global sections of the vector bundle E, the operator

A∗A : C∞(E) → C∞(E)

is of order 0. Indeed, let us denote by r the rank of E and consider a local frame
h1 , . . . , hr of E. Then we can write a local section h �

∑
i fi hi , with fi ∈ C∞(B).

Then
A∗A(h) �

∑
i

fiA∗A(hi).

Thus, as an operator on the global sections C∞(E), the operator L̂ is elliptic, since
R∗R is from [1414, §4] andA∗A is of lower order. We have established the following:

Theorem 3.9. Let L̂ be the linearisation of the optimal symplectic connection equation
(2.102.10). Then L̂ is an elliptic operator of order two on the global sections of E which is
self-adjoint and whose kernel consists of fibrewise I-holomorphy potentials which are also
global Js-holomorphy potentials for all s.
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3.4 Automorphisms of the optimal symplectic connection
equation

Let (X,HX) → B be a relatively cscK fibration. Consider the complex group
Aut(X,HX) of automorphisms of X lifting to HX . Its Lie algebra is given by the
holomorphic vector fields which vanish somewhere, and we denote it by h0. Recall
from (2.132.13) the group of relative Hamiltonian isometries

Kπ :� Isom(πx , ω) �
{

f ∈ Diffeo(X) | f ∗ω � ω and πX ◦ f � πX
}

and from Definition 2.22.2 the group of relative automorphisms

Aut(πX) �
{

f ∈ Aut(X,HX) | πX ◦ f � πX
}
.

We denote by hπ the Lie algebra of Aut(πX) and kπ the Lie algebra of Kπ. An
element in hπ is a holomorphic vector field which vanishes somewhere and whose
flow lies in Aut(πX), while an element of kπ is a holomorphic vector field which
corresponds to a Killing vector field under the identification of the real tangent
bundle TRX with the holomorphic tangent bundle T1,0X. The following fibration
version of Theorem 1.41.4 is a result of Dervan and Sektnan [1414], [1717].

Lemma 3.10. 1. Let ω be an optimal symplectic connection and f ∈ Aut(πX). Then
f ∗ω is an optimal symplectic connection.

2. Let ω be an optimal symplectic connection. Then

hπ � kπ ⊕ Ikπ .

In particular, the lemma implies that KCπ is contained in Aut(π) with equality
holding if (ω, I) is an optimal symplectic connection.

We next prove an analogous result for the optimal symplectic connection equa-
tion (2.102.10) on a fibration with K-semistable fibres. Let (Y,HY) → (B, L) be such a
fibration admitting a degeneration to (X,HX) → (B, L) and let Vπ be the Kuranishi
space of πX . Let (X ,H) → (B, L) × S be the degeneration family. The family of
complex structures { Js} with J0 � I corresponds to a family {ys} of points in Vπ
such that y0 is the origin of Vπ. Let v be the tangent vector at the origin of Vπ that
represents the degeneration family, i.e.

v � ∂s |s�0 ys .

Consider the stabiliser of v for the action of Kπ, denoted Kπ,v . Then

Kπ,v �
{

f ∈ Kπ | f ∗v � v
}
,

and
Gπ,v � (KCπ)v . (3.6)
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3.4 Automorphisms of the optimal symplectic connection equation

For f ∈ Gπ,v

∂s |s�0 ys � v � f ∗v � f ∗
(
∂s |s�0 ys

)
� ∂s |s�0

(
f ∗ys

)
.

Therefore
∂s |s�0(ys − f ∗ys) � 0,

so v � f ∗v. So the elements of Gπ,v are automorphisms of the complex structure I
of the relatively cscK degeneration X → B that preserve the projection πX and are
also automorphisms of the complex structures Js . Moreover, the pull-back of the
optimal symplectic connection operator via f ∈ Gπ,v satisfies

f ∗
(

1
2
ν(v) + pE(Θ(ω, I))

)
�

1
2
ν(v) + pE(Θ( f ∗ω, I)).

Indeed, since ν is KCπ-equivariant,

f ∗ν(v) � ν( f ∗v) � ν(v),

and by Lemma 3.103.10,
f ∗(pE(Θ(ω, I))) � pE(Θ( f ∗ω, I)).

We have proven the following.

Lemma 3.11. Let ω be an optimal symplectic connection and f ∈ Gπ,v . Then f ∗ω is an
optimal symplectic connection. Moreover, if ϕ is a fibrewise I-holomorphy potential whose
flow of the gradient lies in Gπ,v , then ϕ is in the kernel of the linearisation L̂.

Let gπ,v be the Lie algebra of Gπ,v , consisting on those holomorphic vector fields
whose flow lies in KCπ andwhich preserve v. In particular, preserving v means that
they extend to holomorphic vector fields with respect to all Js . Let kπ,v be the Lie
algebra of Kπ,v , of Killing holomorphic vector fields whose flow preserves v. We
can then prove a version of Theorem 1.41.4 for our setting.

Theorem 3.12. Let ω be an optimal symplectic connection. Then

gπ,v � kπ,v ⊕ Ikπ,v .

In particular Kπ,v is a reductive subgroup of Gπ,v .

Proof. FromTheorem3.93.9, the kernel L̂ of the linearisation of the optimal symplectic
connection equation consists of fibrewise I-holomorphy potentials which are also
global Js-holomorphy potentials for all s. From the discussion above, this is in
bĳection with the Lie algebra gπ,v , and kπ,v corresponds to the real vector fields
in gπ,v . Since L̂ is a real operator, L̂(u + iv) � 0 if and only if L̂(u) � 0 and
L̂(v) � 0. �
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3.5 Special Kähler metrics on the total space: the adiabatic
limit

Let (X ,H) → B × S be a family of submersions with central fibre the fibration
(X,HX) → (B, L) as before. In this section we construct approximate constant
scalar curvature and extremal metrics on the total space of πY : (Y,HY)→(B, L),
assuming the optimal symplectic connection and the extremal symplectic connec-
tion, respectively. We first construct approximate solutions in the case of a discrete
automorphism group and in the presence of automorphisms, and then we perturb
the approximate solutions by applying the implicit function theorem. We do so by
using an adiabatic limit, such as in [2424, 1414].

We will later need to choose ωB appropriately, to produce cscK and extremal
metrics on Y. To do so, we use the moduli theory of cscK manifolds explained in
§1.51.5. LetMcscK be the moduli space of polarised cscKmanifolds. Since our central
fibration π : X → B has cscK fibres, it induces amap q : B→McscK . The pull-back
via q of the Weil-Petersson metric, denoted αWP , is a closed smooth (1, 1)-form on
B, and it has the expression (1.271.27):

αWP �
Ŝb

m + 1

∫
X/B

ωm+1 −
∫

X/B
ρ ∧ ωm , (3.7)

where ρ is the relative Ricci form defined in Section 2.2.12.2.1 and m is the dimension
of the fibres. Recall that αWP is positive semi-definite in general.

Definition 3.13 ([7474, 2424]). The Kähler metric ωB ∈ c1(L) is

1. twisted cscKwith respect to α if there exists a constant cB such that Scal(ωB) −
ΛωBα � cB;

2. twisted extremal with respect to α if Scal(ωB) − ΛωBα ∈ kerDB, where DB is
the Lichnerowicz operator on B.

Definition 3.14. The group of automorphisms of the moduli map is

Aut(q) �
{

f ∈ Aut(B, L)|q ◦ f � f
}
.

If we denote by hB the twisted extremal holomorphy potential, then the lineari-
sation of the twisted extremal operator at a solution is given by the map [3535, §2],
[1515, §3.2]

Lα(ϕ) � −D∗BDBϕ +
1
2
〈∇ΛωBα,∇ϕ〉 + 〈i∂∂̄ϕ, α〉. (3.8)

The kernel of this operator is given by the holomorphy potentials of those vector
fields whose flow lies in Aut(q) [1515, Proposition 3.5]. We prove the following
results.
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Theorem 3.15. Assume that the group Aut(q) and the group Aut(Y,HY) are discrete.
Let ωB be twisted cscK with respect to the pull-back via q of the Weil-Petersson metric
on the moduli space of cscK manifolds. Let ω be an optimal symplectic connection on
(Y,HY) → (B, L). Then for all k � 0 there exists a constant scalar curvature Kähler
metric on Y, in the class [ω] + k[ωB].

When automorphisms are present, we use extremal symplectic connections
and twisted extremal metrics on the base to prove the existence of extremal metrics
on the total space. Recall from Definition 2.112.11 that ω is an extremal symplectic
connection on Y if

L̂
(
pE(Θ(ω, I)) +

λ
2
ν

)
� 0,

so that the function
h1 :� pE(Θ(ω, I)) +

λ
2
ν

is a holomorphy potential for the complex structure of Y.

Theorem 3.16. Assume that there is an action of Aut(πY) on (X ,H)which is equivariant
with respect to the projection onto S and that all automorphisms of the moduli map q lift
to (Y,HY). Let ωB be a twisted extremal metric on B with respect to the pull-back via q
of the Weil-Petersson metric on the moduli space of cscK manifolds. Let ω be an extremal
symplectic connection for on (Y,HY) → (B, L). Then for all k � 0 there exists an extremal
Kähler metric on Y, in the class [ω] + k[ωB].

3.5.1 Approximate solutions in the case of discrete automorphismgroup

In this section we construct approximate constant scalar curvature Kähler metrics
on the total space of πs : (Xs ,Hs)→(B, L), where (Xs ,Hs) is a deformation of a
fibration πX : (X,HX) → (B, L) whose fibres are cscK. We make the assumptions
of Theorem 3.153.15:

1. Aut(Xs ,Hs) is discrete and (Xs ,Hs) admits an optimal symplectic connection.
Thanks to Proposition 3.63.6, this guarantees that the operator L̂ is invertible
and also that the global Lichnerowicz operator on Xs with respect to ωk is
invertible.

2. The base form ωB ∈ c1(L) is twisted cscK with respect to the pull-back via
q of the Weil-Petersson metric, as in Definition 3.133.13, and the group Aut(q) is
discrete. As recalled in the discussion following Definition 3.143.14, this implies
that the linearisation at a solution of the twisted cscK equation on the base is
invertible;

Let k � 0 be such that
ωk � ω + kωB
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is a Kähler metric on X, and let s2 � λk−1 for λ > 0. We relate s and k as
above, namely s2 � λk−1, so we will sometimes denote also the corresponding
complex structure by Jk . Since all the Js are isomorphic, Theorem 3.153.15 still gives
the existence of a cscK metric in each adiabatic class for all Js . The adiabatic limit
technique consists in constructing inductively approximated solutions, which have
constant scalar curvature up to a certain order in k−1/2, then using the implicit
function theorem to perturb an approximate solution to a genuine solution. The
following result establishes the approximate solution.

Proposition 3.17. With the assumptions listed above, for all k � 0 and for each r there
exist functions

fB,2 , . . . , fB,r ∈ C∞(B) fE,2 , . . . , fE,r ∈ C∞(E) fR,2 , . . . , fR,r ∈ C∞(R)

and constants
Ŝ2 , . . . , Ŝr

such that the Kähler potentials

hB
k ,r �

r∑
j�2

fB, j

k j−2 hE
k ,r �

r∑
j�2

fE, j

k( j−1)/2 hR
k ,r �

r∑
j�2

fR, j

k j/2

satisfy

Scal
(
ωk + i∂∂̄

(
hB

k ,r + hE
k ,r + hR

k ,r

)
, Jk

)
� Ŝb +

r∑
j�2

Ŝ j

k j/2 + O
(
k(−r−1)/2

)
.

Proof. With the hypotheses of ω being an optimal symplectic connection and ωB
being a twisted cscK metric on the base, we have

Scal(ωk) � Ŝb + k−1 (
cB + ψR,1

)
+ O

(
k−3/2

)
, (3.9)

where ψR,1 ∈ C∞(R). In order to make the k−1-term constant we add a potential
k−1 f ∈ C∞(R) to ωk . Then

Scal(ωk + k−1i∂∂̄ f ) � Ŝb + k−1 (
cB + ψR,1 − D∗VDV f

)
+ O

(
k−3/2

)
,

where the linearisation of the scalar curvature to order 0 in k coincideswith (minus)
the Lichnerowicz operator with respect to the complex structure I, since the scalar
curvature is constant in order 0, and the higher order terms fall into O

(
k−3/2) .

Since D∗VDV is a fibrewise elliptic differential operator and C∞(R) is orthogonal
to its kernel, we can find a solution fR,1 of

ψR,1 − D∗VDV f � constant . (3.10)
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Summing up, we have proved step r � 2 of Proposition 3.173.17, with fB,2 � 0 � fE,2.
We define

ωk ,2 � ωk + k−1i∂∂̄ fR,2

such that
Scal(ωk ,2) � Ŝb + k−1Ŝ2 + O

(
k−3/2

)
.

To proceed with the approximate solutions, we need the linearisation of the scalar
curvature at a metric (ωk ,r , Jk).
Lemma 3.18. The linearisation of the scalar curvature of ωk ,r satisfies

Lk ,r � −D∗VDV + k−1D1 + k−3/2D3/2 + k−2D2 + O
(
k−5/2

)
,

where
1. D∗VDV is the vertical Lichnerowicz operator with respect to the complex structure I;

2. If f ∈ C∞(B), D j+1/2( f ) � 0 for all j;

3. If f ∈ C∞(B), D1( f ) � 0 and∫
X/B

D2( f )ωm ∧ ωn
B � −Lα( f ),

where Lα is the linearisation of the twisted cscK equation on the base, with twisting
the Weil-Petersson form αWP , at a solution, defined in (3.83.8).

4. If f ∈ C∞(E), then
pE ◦ D1( f ) � −pE ◦ L̂( f ).

Proof of the Lemma. Let us distinguish the parameter s of the deformation of the
complex structure from the parameter k of the polarisation. Consider the case
n � 0, so that we compute the scalar curvature of the metric (ωk , Js). Then

Lk � Lk ,0 + O(s), (3.11)

where Lk ,0 is the linearisation of the scalar curvature of (ωk , I). In [1414, Proposition
4.11] it is proven that

Lk ,0 � −D∗VDV + k−1D′1 + k−2D′2 + O
(
k−3) ,

fromwhich we see that the term of order zero is indeed the vertical I-Lichnerowicz
operator. This proves claim (1). By imposing the relation s2 � λk−1/2 we see that
the O(s)-term in (3.113.11) admits an expansion in powers of k−1/2:

k−1D′′1 + k−3/2D′′3/2 + k−2D′′2 + O
(
k−5/2

)
.

Claim (2) follows from the fact that the deformation of the complex structure is
vertical, thus all the terms involved in the expansion of the scalar curvature coming
from the deformation do not have a C∞(B)-component.

Claims (3) and (4) follow as in [1414, Proposition 4.11]. �
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The proof of Proposition 3.173.17 now goes by induction, using Lemma 3.183.18. We
explain in detail steps r � 3 and r � 4. We start from the expansion

Scal(ωk ,2) � Ŝb + k−1Ŝ2 + k−3/2(ψE,3/2 + ψR,3/2) + O
(
k−2) .

We add a potential k−1/2 fE to ωk ,2. Thus we have

Scal
(
ωk ,2 + k−1/2i∂∂̄ fE

)
� Ŝb + k−1Ŝ2 + k−2/3 (

ψE,3/2 + D1( f ) + ψR,3/2
)
+ O

(
k−2) .

Using Lemma 3.183.18, our hypothesis on the automorphism group of (Xs ,Hs) and
the fact that the linearisation L̂ of the optimal symplectic connection equation at a
solution is elliptic, as proved in Theorem 3.93.9, we can find a smooth fE,3 such that

ψE,3/2 + pE ◦ D1( fE,3) � constant .

This makes the C∞(E)-term constant to order k−3/2. We next add a potential
k−3/2 fR ∈ C∞(R) and we obtain

Scal
(
ωk ,2 + i∂∂̄

(
k−1/2 fE,3 + k−3/2 fR

))
� Ŝb + k−1Ŝ2+

+ k−3/2
(
cE,3/2 + ψ

′
R,3/2 − D

∗
VDV fR

)
+ O

(
k−2) .

Once again, using the fibrewise ellipticity of D∗VDV and the fact that C∞(R) is
orthogonal to its kernel, we obtain a solution fR,3 of the equation

ψ′R,3/2 − D
∗
VDV fR � constant .

Thus we have constructed a Kähler metric on Xs constant up to order k−3/2:

ωk ,3 � ωk ,2 + i∂∂̄
(
k−1/2 fE,3 + k−3/2 fR,3

)
.

As for the step r � 4, we explain how to deal with the C∞(B)-term. We add a
potential fB to ωk ,3, which amounts to adding a potential k−1 fB to ωB. Since the
scalar curvature of the base affects the order k−1-term and not the order zero term,
the combined effect on the linearisation is of order k−2. This allows us to write

Scal(ωk ,3 + i∂∂̄ fB) � Ŝb + k−1Ŝ2 + k−3/2Ŝ3+

+ k−2 (
ψB,2 − D2( fB) + ψE,2 + ψR,2

)
+ O

(
k−5/2

)
.

Thanks to Lemma 3.183.18 and to our hypothesis on the automorphism group of the
moduli map,

ψB,2 − pB ◦ D2( fB) � constant

admits a solution, which we denote fB,4. This makes the C∞(B)-term constant to
order k−2.

The corrections to the C∞(E)-term and to the C∞(R)-term now work exactly as
in the case r � 3. �
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3.5 Special Kähler metrics on the total space

Notice that the order is important: one can make the C∞(E)-term constant
without affecting the C∞(B)-term, but it cannot work the other way around, and
similarly for the C∞(R)-term.

Remark 3.19. The very first step of the approximate solution procedure, which the
expansion (3.93.9), comes from the fact that in Proposition 2.232.23 we have modified the
Kuranishi map Φ in order to meet the requirement that ScalV(ω,Φ(x)) is a section
of E, for x ∈ Vπ. If we do not deform the Kuranishi map in this way, we can
write the vertical scalar curvature as the sum of the projection onto C∞(E) and
the projection onto C∞(R). The C∞(E)-part is the map µπ defined in 2.242.24, while
the C∞(R)-part introduces a term of order k−1/2 in the expansion (3.93.9), which then
becomes

Scal(ωk) � Ŝb + k−1/2 ψR,0 + k−1 (
cB + ψR,1

)
+ O

(
k−2) .

We can get rid of this term by adding a potential k−1/2i∂∂̄ϕR,0 to ωk , as in equation
(3.103.10). Indeed, the linearisation given by Lemma 3.183.18 of the scalar curvature
acquires an extra term

√
kD1/2, which is non-zero only on C∞(R), so it does not

affect the C∞(E) and C∞(B) parts in the k−1-term.

3.5.2 Approximate solutions in the presence of automorphisms

In this section, we allow the base and the total space to have automorphisms. As
before let π̂ : (X ,H) → (B, L)×S be adegenerationof thefibrationπY : (Y,HY) → B
to πX : (X,HX) → B. Let ω ∈ c1(H) be a relatively cscK metric on X; since Y is
a small deformation of X, c1(H) � c1(HY), so we can assume that ω is relatively
Kähler on Y, as explained in §2.2.22.2.2.

We make the hypotheses of Theorem 3.163.16 concerning the groups of automor-
phisms Aut(πY) and Aut(q) defined in 2.22.2 and 3.143.14:

1. There is an action of Aut(πY) on (X ,H) which is equivariant with respect to
the projection onto S. This means that Aut(πY) acts on each Xs as a subgroup
of automorphismsof (Xs ,Hs). Since the action extends to the central fibration,
this assumption allows us to view Aut(πY) as a subgroup of Aut(π). In
particular, recall from Remark 3.73.7 that kerL̂ � Lie(Aut(πY)) ∩ Lie(Aut(π)).
With this assumption, we obtain

Ker L̂ � Lie(Aut(πY)),

and h1 is a holomorphy potential also on X.

2. All automorphisms of the moduli map q lift to (Y,HY).

The first hypothesis is motivated by the analogous definition of test configurations
which are equivariant with respect to the automorphisms of the fibres, which are
used to test K-polystability of polarised manifolds.
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Recall from Definition 3.133.13 that a twisted extremal metric on B, with twisting
form the Weil-Petersson form αWP (3.73.7), satisfies the condition

Scal(ωB) −ΛωαWP � b1 ∈ kerDB ,

whereDB is the Lichnerowicz operator on the base.
Remark 3.20. Let ĝ be a lift of an automorphism of q to (Y,HY). We claim that ĝ lies
in Aut(X,HX). Indeed, denoting by J the complex structure of Y and I the complex
structure of X, we have

d ĝ ◦ J � J ◦ ĝ.

But since ĝ is an automorphism in the base direction, it is equivalent to say that

d ĝ ◦ JH � JH ◦ ĝ ,

where JH is the horizontal part of J. Now, JH � IH , since the deformation of the
complex structure which we are considering is only in the vertical direction. Thus
ĝ is a lift of an automorphism of B to X as well.

Definition 3.21. We denote the group of automorphisms of (Y,HY)which are also
automorphisms of (X,HX) as Aut(Y/X,HY).

In light of this definition we have the inclusion Aut(πY) ⊆ Aut(Y/X,HY) and, if
Âut(q) is a lift of Aut(q) to (Y), then Âut(q) ⊆ Aut(Y/X,HY). Thus we can recover
the following result from [1414, Proposition 3.14].

Lemma 3.22. Suppose that all automorphisms of q lift to Y. Then there is a short exact
sequence

0→ Lie(Aut(πY)) → Lie(Aut(Y,HY)) → Lie(Aut(q)) → 0.

Remark 3.23. Let us denote by ξE the holomorphic vector field on Y which arises
from the extremal symplectic connection condition:

ξE � Js∇V
(
pE(Θ(ω, I)) +

λ
2
ν

)
,

and ξq the holomorphic vector field on B which arises from the twisted extremal
condition:

ξq � JB∇B(Scal(ωB) −ΛωαWP).
By our assumptions, ξE is a holomorphy potential on X, and ξq lifts to a holomor-
phic vector field on Y (and on X). Nonetheless, the holomorphy potential of ξq on
Y is a function b̃1 such that

b̃1 � kπ∗b1 + O(1).

Again from Remark 3.203.20, b̃1 is holomorphic potential for a lift of ξq also on X.
As in [1414], we need to assume the following invariance properties: ω is invariant

56
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under the flow of ξE and of the pull-back of ξq . In order to make this assumptions
reasonable toworkwith,we consider amaximal torusTE inAut(πY)which contains
the flow of ξE, and a maximal torus Tq in Aut(B, L) which contains the flow of ξq .
The pull back T̂q lies in Aut(Y/X,HY). Thenwe fix amaximal torus T in Aut(Y,HY)
which contains TE and Tq , and we require that ω is invariant with respect to T.
From Lemma 3.223.22, we obtain a splitting Lie(T) � Lie(TE) + Lie(Tq), so indeed we
have T ⊂ Aut(Y/X,HY) as well.

Moreover, an analogous splitting holds also for the complexification TC, so we
canwrite every vector field ξ ∈ Lie(TC) as ξE+ξq . If hE is the holomorphy potential
of ξE with respect to ω and hB is the holomorphy potential of ξq on the base with
respect to ωB, then hE + kπ∗Y hB is a holomorphy potential of ξ on Y (and on X).

Define the extremal symplectic connection operator

P : C∞(Y,R) × C∞(E) → C∞(Y,R)

by

P(ϕ, h1) � pE
(
Θ(ω + i∂∂̄ϕ, Js)

)
+
λ
2
νϕ − h1 −

1
2
〈∇h1 ,∇ϕ〉ωF .

The linearisation at (h1 , 0) applied to (h1 , ψ) is obtained, as for the extremal operator
described in (1.21.2), as follows:

L̂(ψ) − h1 −
1
2
〈∇h1 ,∇ψ〉ωF ,

where L̂ is the real operator of the linearisation of the optimal symplectic connec-
tion equation described in Lemma 3.43.4 and the map sending ϕ to 〈∇h1 ,∇ϕ〉ωF is
linear. We can write

〈∇h1 ,∇ψ〉ωF �
1
2
∇h1(ψ) +

1
2

i J∇h1(ψ),

so if we assume that ψ is invariant under the torus T, the second term vanishes
and linearisation is a real operator.

With all of these assumptions in place, we can obtain approximate solutions to
the extremal equation much as in §3.5.13.5.1.

Proposition 3.24. Let (X ,H) → B × S be a degeneration of a smooth fibration πY :
(Y,HY) → B to a smooth relatively cscK fibration πX : (X,HX) → B, equivariant with
respect to Aut(πY). Let ω be an extremal symplectic connection on Xs , invariant under
the torus T described in Remark 3.233.23. Let ωB a twisted extremal metric on the base, and
assume that all automorphisms of q lift to Y. Then for each r > 1 there exist functions

fB,2 , . . . , fB,r ∈ C∞(B)T , fE,2 , . . . , fE,r ∈ C∞(E)T , fR,2 , . . . , fR,r ∈ C∞(R)T ,

base holomorphy potentials
b1 , . . . , br ∈ C∞(B)T ,
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Extremal metrics on the total space

fibre holomorphy potentials
h1 , . . . , hr ∈ C∞(E)T

and a constant c such that, letting

hB
k ,r �

r∑
j�2

fB, j

k j−2 , hE
k ,r �

r∑
j�2

fE, j

k( j−1)/2 , hR
k ,r �

r∑
j�2

fR, j

k j/2

and

ηk ,r � c +
r∑

j�1

(
b j k(− j−1)/2

+ h j k− j/2
)
,

the Kähler metric
ωk ,r � ωk + i∂∂̄

(
hB

k ,r + hE
k ,r + hR

k ,r

)
satisfies

Scal
(
ωk ,r , Jk

)
� ηk ,r +

1
2
〈∇ηk ,r ,∇

(
hB

k ,r + hE
k ,r + hR

k ,r

)
〉ωk + O

(
k−r−1/2

)
.

3.5.3 Solution to the non-linear equation

In order to have genuine solutions, we perturb ωk ,r to a genuine extremal metric
by using a quantitative version of the implicit function theorem, as in [2424, 77, 1515, 1414].
In particular, all the cited works rely on Fine’s paper [2424], though the difference
with Fine’s setting is that we are considering the base and the total space to have
automorphisms, so the linearised operators will have a non-trivial kernel to deal
with.

Theorem 3.25 ([77, Theorem 25]). Let F : B1 → B2 be a differentiable map of Banach
spaces such that D0F is surjective with right-inverse P. Let

1. δ′ > 0 be such that the non-linear operator (F − D0F) is Lipschitz in Bδ′(0) with
constant 1

2‖P‖ , i.e. for x1 , x2 ∈ Bδ′(0) ⊆ B1, we have

‖(F − D0F) (x1) − (F − D0F)(x2)‖B2 ≤
1

2‖P‖ ‖x1 − x2‖B1 ;

2. δ �
δ′

2‖P‖ .

Then for all y ∈ B2 such that ‖y − F(0)‖ < δ, there exists x ∈ B1 such that F(x) � y.

To apply the theorem to the extremal operator, one should bound both the right
inverse of the linearisation and the non-linear operator. Denote by L2

0,p the Sobolev
spaces of functions on Y computed with respect to ωk ,r , and remark that these do
not depend on k, since the Sobolev norms are equivalent for different values of k
[77, Remark 30].
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3.5 Special Kähler metrics on the total space

Let t be the Lie algebra of T, where T is the torus of automorphisms described
in Remark 3.233.23. Let t be the set of holomorphy potentials whose flow lies in T. We
denote by (L2

0,p)T the space of T-invariant functions in L2
0,p .

For each k , r denote by γk ,r the Kähler potential defined in Proposition 3.243.24,
such that the approximately extremal metric ωk ,r is given by ωk + i∂∂̄γk ,r . For each
k , r we define the map

τk ,r : t→ C∞(X,R)

ξ 7→ kπ∗Y hB + hq +
1
2
〈∇γk ,r ,∇(kπ∗Y hB + hq)〉ωk ,

where hB and hq are the holomorphy potentials defined in Remark 3.233.23. The
map τk ,r associates to a T-invariant holomorphic vector field the correspondent
holomorphy potential with respect to ωk ,r .

We apply the theorem to the operators

Fk ,r : (L2
0,p+4)T × t→ (L2

0,p)T

Fk ,r(ϕ, h) � Scal(ωk ,r + i∂∂̄ϕ) − 1
2
〈∇ηk ,r ,∇γk ,r〉 − ηk ,r −

1
2
〈∇(τk ,r(h)),∇ϕ〉 − τk ,r(h),

where ηk ,r is the Kähler potential which makes ωk ,r approximately extremal. The
linearisation of Fk ,r is the operator

Gk ,r : (L2
0,p+4)T × t→ (L2

p)T

(ϕ, h) 7→ −D∗k ,rDk ,r(ϕ) +
1
2
〈∇(Scal(ωk ,r) − τk ,r(h)),∇ϕ〉 − τk ,r(h).

The proof requires two steps: the first one is to ensure that the linearisation is
surjective with bounded inverse Pk ,r . Theorem 3.253.25 then gives δk such that if
‖Fk ,r(0)‖ < δk , a zero of Fk ,r exists. Since wewant to find a zero for all k, the second
step is to find a value of r for which the norm ‖Fk ,r(0)‖ converges to zero quicker
than δk . The first step is contained in the following lemma [1515, Lemma 6.6], based
on [2424, Lemmas 6.5,6.6,6.7].

Lemma 3.26. There exists a constant C independent of k such that Gk ,r has a right inverse
Pk ,r such that Pk ,r

 ≤ Ck5/2.

The second step relies on the following result [1515, Lemma 6.6], which is a
consequence of the mean value theorem.

Lemma 3.27. LetNk ,r � Fk ,r −d0Fk ,r be the nonlinear part of the extremal operator. Then
there are constant c , C such that for all r sufficiently large, if fi ∈ (L2

p+4)T × t for i � 1, 2
satisfy ‖ fi ‖ ≤ c, thenNk ,r( f1) − Nk ,r( f2)


L2

p
≤ C

(
‖ f1‖L2

p+4(ωk ,r ) + ‖ f2‖L2
p+4(ωk ,r )

)  f1 − f2


L2
p+4(ωk ,r ).
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Extremal metrics on the total space

By applying the implicit function Theorem 3.253.25, we can now complete the proof
of Theorem 3.163.16 as follows. Lemma 3.273.27 implies that Nk ,r is Lipschitz on any ball
of radius ρ sufficiently small, with Lipschitz constant ρC. Thus the radius δ′
on which Nk ,r is Lipschitz with constant (2‖P‖k ,r)−1 is bounded below by some
multiple of k−5/2. Hence δ � δ′(2‖P‖)−1 is bounded below by a multiple of k−5. In
order to apply the implicit function theorem, it remains to bound Fk ,r(0, 0). The
point-wise bound Fk ,r � O(k(−r−1)/2) is provided by Proposition 3.243.24. Results of
Fine [2424, Lemma 5.6, 5.7] can be applied directly to our situation in order to have
a L2

p(ωk ,r)-bound on Fk ,r(0) of order k5− 1
2 , when r > 5. Thus the hypotheses of the

implicit function theorem are satisfied and ‖Fk ,r(0)‖ converges to zero quicker than
δk . Therefore Fk ,r admits a zero for all k sufficiently large, which gives the required
extremal metric on Y.
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Chapter 4

The moduli space of holomorphic
submersions

We construct the moduli space of fibrations admitting optimal symplectic con-
nections, with discrete relative automorphism group. Our main reference in the
construction is Fujiki-Schumacher [3131], where the moduli space of cscK manifolds
in the case of discrete automorphism group is defined. Let Y → B be a fibration
that degenerates to a relatively cscK holomorphic submersion X → B, as described
in §2.3.12.3.1. We first prove that the set of deformations of Y → B that still degenerate
to a relatively cscK fibration (possibly different from X → B) forms a locally closed
analytic subset of the relative Kuranishi space. We then prove that the solutions
to the optimal symplectic connection equation (2.102.10) form an open set inside the
locally closed subset of admissible deformations. This allows us to define a local
moduli space of optimal symplectic connections. Finally, we glue the local mod-
uli spaces and we prove that we obtain a global Hausdorff complex space which
parametrises optimal symplectic connections.

4.1 Openness of the setting

Given a fibration πY : (Y,HY) → (B, L) with analytically K-semistable fibres, we
assume as in §2.2.22.2.2 that there exists a degeneration of πY to a fibration πX :
(X,HX) → (B, L) such that the fibres of πX are cscK. In particular, we can consider
Y → B and X → B as the same symplectic fibration π : (M, ω) → B, and the
degeneration as a deformation of a complex structure J to I, where (ω, I) has
fibrewise constant scalar curvature. The goal of this section is to understand for
which deformations J′ of J we can still find a relatively cscK degeneration X′, and
to construct such a degeneration.

We begin by working locally in B. LetU ⊆ B be a coordinate open subset of B.
The fibre over the origin ofU , denoted M0, has a constant scalar curvature metric
(ω0 , I0). Let K be the group of Hamiltonian isometries of (ω0 , I0) and let H̃1

0 be



The moduli space of holomorphic submersions

the vector space (1.151.15) parametrising first-order deformations of (M0 , ω0 , I0). Since
(ω0 , I0) has constant scalar curvature, the complexification of K is the group

G � Aut0(M0 ,H0).

Wewill employDefinition 1.91.9 of GIT-stability for the action of a reductive group
on an affine space, applying the definition of stability to the vector space H̃1

0 . The
complex structure I0 corresponds to the origin in the Kuranishi space V0, which is
fixed by the action of G. Therefore its orbit is closed and its stabiliser is the group
G itself, so it is a polystable point. A key result for our construction is the fact
that the closure of the orbit of every point in H̃1

0 contains a unique polystable orbit
(Lemma 1.81.8).

Let V0 be the subspace of the Kuranishi space which parametrises integrable
almost complex structures; it is a locally closed analytic subspace of H̃1

0 because
it is defined by the vanishing of the Nĳenhuis tensor. Thus the family X → B
can be described locally over U as a family {xb} in V0. By our hypothesis 22, the
automorphism group of (Mb ,Hb) is isomorphic to G for all b ∈ B. Therefore the
points {xb | b ∈ U} are all fixed by the action of G and are hence polystable.

The family Y → B can be described locally overU as a family {yb | b ∈ U} of
points such that for each b the closure of the G-orbit of yb contains the polystable
point xb [1212, Theorem 1.3]. By Lemma 1.81.8, xb is the only polystable orbit in the
closure of the orbit of yb . Let V+

0 be the set of all semistable points that have a fixed
point in the closure of their orbit. Then the map

F : V+

0 → V0 (4.1)

that maps a semistable point to the corresponding fixed point is well-defined.

Lemma 4.1. The set V+

0 is an analytic subvariety of V0 and the map (4.14.1) is holomorphic.

Proof. The spaceV0 is an open subset of the vector space H̃1. Let d be the dimension
of H̃1, so each point z ∈ V0 has coordinates

(z1 , . . . , zd) .

Let us begin with the case when G is isomorphic to C∗. The fixed points of the
action can be described by the vanishing of some coordinates

zi1 � · · · � zih � 0 where i1 , . . . , ih ∈ {1, . . . , d},

thus they form an analytic subspace of V0. The action of C∗ can be written as

t · (z1 , . . . , zd) � (ta1 z1 , . . . , tad zd),

where the numbers a j are the weights of the action. Then V0 splits into a sum of
weight spaces Vpos

0 ⊕ Vfix
0 ⊕ Vneg

0 , where C∗ acts on Vpos
0 with positive weights, on
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Vneg
0 with negative weights and fixes the subspace Vfix

0 . By the Hilbert-Mumford
criterion 1.111.11, a semistable point that has a fixed point in the closure of its orbit is
described by the following condition: if a coordinate in Vpos

0 is nonzero, then all
coordinates inVneg

0 vanish, and viceversa. This condition yields a set of polynomial
equations that define the semistable points in V+

0 for the action of C∗. Thus, the
semistable points correspond to an analytic subset ofV0. Themap F is theprojection
onto the set described by {zi1 � . . . � zih � 0}, thus it is holomorphic.

Let now G be any reductive group, and let y be a semistable point and x be
a polystable and fixed point in the closure of its orbit. The fixed points of G
form a vector subspace Vfix

0 also in this case. Moreover there exists a 1-parameter
subgroup λx : C∗ ↪→ G such that

lim
t→0

λx(t) · y � x.

It follows that themap that sends y to thefixedpoint x in the closure of its orbit is the
projection onto the vector subspace of fixed points for λx , hence it is holomorphic.
Consider the composite map

V0 → V0
pr
→ Vfix

0 (4.2)

where the first map is the projection onto the vector subspace of fixed points
for λx and the second map is the projection onto the subspace of fixed points
for the whole group G. The map is holomorphic because it is a composition
of holomorphic projections. We prove that it coincides with the map (4.14.1). Let
x̃′ � limt→0 λx(t) · y′. Then

G · x̃′ ⊆ G · y′.

The unique polystable orbit contained in G · x̃′ is also a polystable orbit in G · y′,
so it must coincide with the fixed-point orbit {x′}. Thus flowing along the orbit of
x̃′ amounts to projecting onto the subspace of fixed points, and so the map (4.24.2)
maps any point y′ to the fixed point x′ in the closure of its orbit. �

Remark 4.2. The map (4.14.1) is analogous to the one given by the Byałinicki-Birula
decomposition [44, 4646].

Let Vπ be the Kuranishi space of the fibration X → B defined in Theorem 2.212.21.
Consider the subspace

V+
π :�

{
y ∈ Vπ | y |Xb ∈ V+

b

}
.

We remark that V+
π depends on the complex structure of the reference fibration

X → B and its deformation Y → B. We denote by J +
π the image of V+

π via the
relative Kuranishi map (2.182.18).

Lemma 4.3. V+
π is a locally closed subvariety of Vπ.
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Proof. Let U1 and U2 be two open coordinate subsets of B with non-empty inter-
section and let 01 be the origin of U1 and 02 be the origin of U2. Denote by I1
and I2 the complex structures of the fibres X01 and X02 , and G1, G2 their groups
of automorphisms. By assumption, G1 and G2 are isomorphic, and we will denote
them by G. Recall that the Kuranishi space is versal and more specifically that it
is a complete deformation space for the nearby fibres. We use the versality of the
Kuranishi map to glue the spaces V+

1 and V+

2 constructed in Lemma 4.14.1 to a variety
V+ and prove thatV+

π is obtained as the intersection of said varietywith the relative
Kuranishi space Vπ. More precisely, versality of the Kuranishi space means that
there is a map

τ21 : V2 → V1 ,

not necessarily unique.
The map τ21 can be taken to be G-equivariant. In fact, the G-equivariance can

be traced back to the proof of Kuranishi’s Theorem 1.231.23. The map τ21 is defined
using the implicit function theorem, which can be applied to a K-equivariant map
to provide an implicit inverse function which is K-equivariant. Since G is the
complexification of K, we obtain that τ21 is G-equivariant. The equivariance also
implies that the image of V+

2 is V+

1 , so we can restrict τ21 to

τ̃21 : V+

2 → V+

1 .

Moreover the map τ̃21 has an inverse that is constructed reversing the roles of V1
and V2, so it is an isomorphism. In fact, although the map τ21 is not canonical,
the restriction to τ̃21 is fixed by the reference K-semistable fibration Y → B. Each
Kuranishi space Vb is a complex subspace of the vector space H̃1

b , described as the
kernel of the elliptic operator PbP∗b + (∂̄

∗
b ∂̄b)2 (1.151.15). So we can use the isomorphism

τ̃21 to glue the spaces V+

b to a subvariety V+ of the kernel of the fibrewise elliptic
operator

PVP∗V + (∂̄∗V ∂̄V)
2.

Therefore the intersection
V+
π � V+ ∩ Vπ

is a locally closed subvariety of Vπ. �

The following lemma shows that we can glue the local fibration constructed in
Lemma 4.14.1 to a global fibration over B.

Lemma 4.4. Let Y′ � (M, ω, J′) → B be a fibration with complex structure J′ represented
by y′ ∈ V+

π . Then Y′ degenerates to X′ � (M, ω, I′) → B such that

1. (ω, I′) is relatively cscK;

2. the groups Aut(X′b ,H
′
b) are isomorphic for all b ∈ B.
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Proof. LetU ⊆ B be an open coordinate subset. By the relative Kuranishi Theorem
1.231.23, for each b ∈ U there exists a point y′b ∈ V0 such that Φ0(y′b) is in the same
Gc-orbit of J′b . The fact that the map (4.14.1) is holomorphic implies that we can
find polystable points {x′b} such that {Φ0(x′b)} are a holomorphic family of cscK
complex structures overU that are deformations of { J′b}. Then we can construct a
local relatively cscK fibration from the pullback diagram

X′U MU

U V0

pU

i

(4.3)

where pU :MU → V0 is Kuranishi’s versal family and i(b) � x′b .
Now we glue the local fibrations to a fibration X′ → B. LetU1 andU2 and G

be as in Lemma 4.34.3. The associated Kuranishi maps are denoted respectively by
Φ1 : V1 →J and Φ2 : V2 →J .

For b ∈ U1 ∩U2, consider the complex structure J′b . Since J′b can be regarded as
a deformation of both I1 and I2, there exist points y′b ,1 ∈ V1 and y′b ,2 ∈ V2 such that

Φ1(y′b ,1) � J′b � Φ2(y′b ,2).

The diagram (4.34.3) produces two fibrations X′1 → U1 and X′2 → U2. In order to
glue the local fibrations we need to prove that there is an isomorphism

φ12 : X′1 |U1∩U2

∼→ X′2 |U1∩U2

and that it satisfies the cocycle condition

φ23 ◦ φ12 � φ13

on a triple intersection U1 ∩ U2 ∩ U3 of open subsets of B. In particular, the
first condition produces a global compact complex manifold X′, while the cocycle
condition implies that X′ admits a submersion onto B.

To prove the existence of the isomorphism φ12 we use again the fact that the
Kuranishi space induces complete deformations on the nearby fibres. The map

τ21 : V2 → V1

is such thatM2 � τ∗21M1. In particular, we have the following diagram

M2 M1

V2 V1

X′2 U1 ∩U2 X′1.

τ21

i2 i1
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If we show that the diagram is commutative, i.e. τ21 ◦ i2 � i1, then

X′2 |U1∩U2 � i∗2M2 ' (τ21 ◦ i2)∗M1 � i∗1M1 � X′1 |U1∩U2 .

The commutativity follows from the fact that the map τ21 is G-equivariant. Indeed
the points i1(b) and i2(b) are defined as the fixed-point limits of semistable orbits.
Moreover, an equivariant map between two spaces on which there is an action of
the same group G sends fixed points to fixed points and the closure of the orbit of
i1(b) to the closure of the orbit of i2(b).

We now show the cocycle condition. LetU be a triple intersectionU1∩U2∩U3
and consider the following diagram

V1 V2 V3

U

τ21 τ32

τ31

i1 i3
i2 .

On V3 we have two families pulled-back from V1, namely τ∗31M1 and (τ21◦τ32)∗M1.
They induce two distinct families onU , pulled-back using i3. Although in general
it is not true that τ31 is equal to the composition τ21 ◦ τ32, the commutativity of the
arrows proved above implies that

τ21 ◦ τ32 ◦ i3 � τ31 ◦ i3.

Therefore the two families τ∗31M1 and (τ21 ◦ τ32)∗M1 coincide. �

4.2 Openness of the space of optimal symplectic connec-
tions

Let Y → B be a fibration with K-semistable fibres, and assume that it degenerates
to a fibration X → B with cscK fibres, in the sense of §2.2.22.2.2. Let Y′ → B be a
deformation of Y → B in J +

π . Then Y′ → B admits a degeneration to X′ → B,
whose fibres are cscK, as explained in §4.14.1. The goal of this section is to show that
if Y admits an optimal symplectic connection then Y′ also does.

We denote by I the complex structure of X, by J the complex structure of Y and
we assume that Y → B is generated by v0 ∈ Vπ. We also assume that (ω, J) is an
optimal symplectic connection. Let V+

π be the subvariety of Vπ which describes the
family of complex structuresJ +

π . The following is a relative version of Proposition
1.221.22.

Proposition 4.5. For every ϕ ∈ KE(I) there exists f ∈ Diff0(M) such that f ∗ωϕ � ω
and (M, ωϕ , I) → B is isomorphic to (M, ω, f ∗I) → B.

66



4.2 Openness of the space of optimal symplectic connections

Proof. Let us consider a potential ϕ ∈ KE(I) and a path {ϕt} in KE(I) from 0 to ϕ.
A result of Hallam [3434, Theorem 3.3] guarantees that this path exists and that it is
smooth. We define the relatively cscK metrics

ωt � ω + 2i∂∂̄ϕt

and the Kähler metrics
ωk ,t � ωt + kωB ,

where the ∂, ∂̄ operators are taken with respect to the relatively cscK complex
structure I. From Proposition 2.52.5, we have that Ûϕt ∈ C∞(E(ωt , I)) ⊕ C∞(B), for all
t. Thus the fibrewise Hamiltonian vector fields

ηt :� gradωt Ûϕt

are well-defined. Consider the vertical vector fields

ξt :� (∇gt Ûϕt)V � (Igradωt Ûϕt)V .

Then fibrewise
d
dt
ωt � −LIηtωt � Lξtωt . (4.4)

Let { ft , t ∈ [0, 1]} be the isotopy of the time-dependent vector field ξt , i.e. the
collection of diffeomorphisms of M such that

d
dt

ft � ξt( ft), f0 � id.

Since ξt is vertical, ft ∈ Diffeo(M, π). As in the proof of Proposition 1.221.22, we apply
the following property (1.131.13):

d
dt

f ∗t ηt � f ∗t

(
Lξtηt +

dηt

dt

)
,

where ξt and ft are a time-dependent vector field and its isotopy respectively.
Applying it to ωt gives the fibrewise relation

d
dt

f ∗t ωt � 0,

which implies
f ∗t ωt � f ∗0ω � ω.

Define Jt � f ∗t I. Then, for t � 1, the two metrics g(ω, f ∗1 I) and g(ω + 2i∂∂̄ϕ, I) are
fibrewise isometric, i.e.

(M, ω, f ∗1 I) ' (M, ω + 2i∂∂̄ϕ, I)

as relative Kähler manifold with fibrewise constant scalar curvature. �
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Thus, given an integrable relatively cscK complex structure I in Jπ, we have a
map

Fπ : KE(I) −→Jπ

ϕ 7−→ f ∗1 I �: Fπ(ϕ, I)
(4.5)

which locally parametrises all integrable complex structures in the same diffeomor-
phism class of I that are fibrewise cscK with respect to the fixed ω. Its differential
at the origin is

d0Fπ( Ûϕ) �
d
dt

����
t�0

Jt �
d
dt

����
t�0

f ∗t I �
d
dt

����
t�0
Lξt I � L(Igradω Ûϕ)V I � −1

2
∂̄(gradω Ûϕ)V ,

where, again by Proposition 2.52.5, Ûϕ ∈ C∞(E(ω, I)) ⊕ C∞(B).
Now let v0 ∈ Vπ be the deformation of the complex structure which generates

the family Y → B and let Φ be the relative Kuranishi map (2.182.18). Then we can
define the map

F′π : KE(I) → H̃1
V

ϕ 7→ f ∗1 v0 �: F′π(ϕ, I , v0).

Its differential at the origin computed at Ûϕ ∈ C∞(E(ω, I)) ⊕ C∞(B) is

d0F′π( Ûϕ) �
d
dt

����
t�0

f ∗t v0 � L(Igradω Ûϕ)V v0. (4.6)

Definition 4.6. We denote with P the set of triples (ϕ, x , v) ∈ C∞(M) × TVπ such
that ϕ ∈ KE(Φ(x)) and x is KCπ-polystable. The optimal symplectic connection
operator is the map

G : P → C∞(X)

(ϕ, x , v) 7→ pE(ϕ,x)
(
Θ(ω, Fπ(ϕ,Φ(x)))

)
+
λ
2
νϕ,x

(
F′π(ϕ,Φ(x), v)

)
.

In this expression E(ϕ, x) is the vector bundle of fibre holomorphy potentials with
respect to the Kähler structure (ω, Fπ(ϕ,Φ(x))) and νϕ,x is the map (2.82.8) computed
with respect to the complex structure Fπ(ϕ,Φ(x)).

Wenowcompute thedifferential ofG along theϕ-variable computedat (0, 0, v0).
To do so, we need the following technical result on the contraction with ωk .

Lemma 4.7. Let α be a covariant 2-tensor of type (1, 1). Then

Λωkα � ΛVα +
1
k
ΛωBα + O

(
k−2) ,

where Λωk denotes the contraction with the Kähler metric ωk , ΛV denotes the contraction
in the vertical direction and ΛωB denotes the contraction with respect to the base metric.
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Proof. At each point x ∈ Xb ⊂ X, the matrix [ωk] is block-diagonal:(
[ωF] 0

0 [ωk ,H ]

)
.

In local coordinates around the point x

(ωk)pq̄αpq̄ � (ωF)ab̄αab̄ + (ωk ,H )i j̄αi j̄ .

The horizontal part of ωk , denoted ωk ,H splits as ωH + kωB, where ωH is the
horizontal part of ω. Let [ωk ,H ], [ωH ] and [ωB] be the matrices of coefficients of
the two-forms ωk ,H , ωH and ωB respectively. We can write

[ωk ,H ] � k
( [ωH][ωB]−1

k
+ 1

)
[ωB],

where 1 is the identity matrix and the base form ωB induces a Riemannian metric
on the horizontal tangent bundle, so its inverse is well defined. The inverse of the
matrix [ωk ,H ] can be expanded in inverse powers of k as

[ωk ,H ]−1
� k−1[ωB]−1

(
[ωH ][ωB]−1

k
+ 1

)−1

� k−1[ωB]−1
∞∑

i�0

(
−[ωH ][ωB]−1

k

) i

�
1
k
[ωB]−1

+ O
(
k−2) .

This implies the claim. �

We then write
G(ϕ, x , v) � G1(ϕ, x) + G2(ϕ, x , v),

where
G1(ϕ, x) � pE(ϕ,x)

(
Θ(ω, Fπ(ϕ,Φ(x)))

)
and

G2(ϕ, x , v) �
λ
2
νϕ,x

(
F′π(ϕ,Φ(x), v)

)
,

and we split the computation into two separate lemmas.

Lemma 4.8. Let ϕ ∈ C∞(E(ω, I)) ⊕ C∞(B). The differential along the first variable of G1
is

D1G1 |(0,0,v0)(ϕ) � −
1
2
R∗R(ϕ).
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Proof. Let { Jt} be a family of relatively cscK complex structures compatible with
ω, such that J0 � I and consider the scalar curvature of (ωk , Jt),

Scal(ωk , Jt) � Scal(ωk , I) + t
d
dt

����
t�0

Scal(ωk , Jt) + O(t2). (4.7)

Let α � ∂t�0 Jt , and define

Qk(α) :� d
ds

����
s�0

Scal(ωk , Jt).

From Lemma 1.181.18 we obtain

Qk(α) � Im
(
(gk)pq̄ ∇p∇aα

a
q̄

)
� Re

(
(ωk)pq̄ ∇p∇aα

a
q̄

)
.

We need to compute the sub-leading order term of Qk along the differential of the
map Fπ (4.54.5)

Let us consider α � ∂̄
(
gradωϕE

)1,0
V , where ϕE ∈ C∞E (X) is a fibrewise holomor-

phy potential. Then

Qk(α) � k−1Re
(
R∗R(ϕE

)
) + O

(
k−2) , (4.8)

where R(ϕE) � ∂̄BgradVϕE and the adjoint is computed with respect to ωF + ωB.
As explained in §2.2.12.2.1, the operator R∗R can actually be seen as pE ◦ L1 restricted
to C∞(E(ω, I)). Its kernel consists of fibrewise holomorphy potentials which are
global holomorphy potentials on X with respect to ωk .

A local coordinate expression for α is

α � ∂̄
(
YϕE

)1,0
V � ∂z̄ j

(
ωab̄

F ∂w̄bϕE

)
∂wa ⊗ dz̄ j

� ∇ j̄

(
ωab̄

F ∇b̄ϕE

)
∂wa ⊗ dz̄ j ,

where we have used that the component of α with the covariant index of ver-
tical type vanishes, since the potential ϕE is a fibrewise holomorphy potential.
Therefore, using Lemma 4.74.7,

Qk(α) � k−1Re
(
ω

i j̄
B ∇i∇a∇ j̄

(
ωab̄

F ∇b̄ϕE

))
+ O

(
k−2)

�

� k−1Re
(
ω

i j̄
B ω

ab̄
F ∇i∇a∇ j̄∇b̄ϕE

)
+ O

(
k−2)

�

� k−1Re
(
R∗R(ϕE

)
) + O

(
k−2) .

A similar computation also holds if we consider, instead of a potential in
C∞(E(ω, I)), a map ϕ ∈ C∞(E(ω, I)) ⊕ C∞(B), so that α � ∂̄(Yϕ)1,0V . This choice
amounts to considering an element in the image of the differential of the map Fπ
(4.54.5). In this case

Qk(α) � Re(L0ϕ) +
1
k

Re(L1ϕ) + O
(
k−2) ,
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where L0(ϕ) � L0(ϕB) � 0, since ϕB is constant when restricted to a fibre, so we
obtain the same equation as (4.84.8). To obtain the correct coefficient in the claimed
expression note that

d0Fπ(ϕ) � −
1
2
α. �

Lemma 4.9. Let ϕ ∈ C∞(E(ω, I)) ⊕ C∞(B). The differential along the first variable of G2
is

D1G2 |(0,0,v0)(ϕ) � −A∗A(ϕ).

Proof. We compute
d
dt

����
t�0
νt

(
f ∗t v0

)
,

where νt is themap ν computedwith respect to the complex structure f ∗t Φ(0). Now,
ft is the isotopy of the vector field ξt � (Igradωt Ûϕt)V , where Ûϕt is in C∞(Et)⊕C∞(B)
and Ûϕ0 � ϕ. In the expression of ξt we are fixing the complex structure I and
varying the Kähler form ωt . In particular, ξt is a fibrewise holomorphic vector
field with respect to I. This implies that f ∗t I � I, so νt � ν. Therefore

d
dt

����
t�0
νt

(
f ∗t v0

)
� dv0ν

(
d
dt

����
t�0

f ∗t v0

)
.

Using the expression (4.64.6) we obtain

dv0ν

(
d
dt

����
t�0

f ∗t v0

)
� dv0ν

(
L(Igradωϕ)V v0

)
.

The right-hand side can be written as −A∗A(ϕ) following the description (3.43.4).
The minus sign follows from the relation

(Igradωϕ)V � −∇Vϕ,

where ∇V is the vertical Riemannian gradient. �

We define the operator

G : P2,` −→W2,`−2(X)

(ϕ, x , v) 7−→ pE(x ,ϕ)
(
Θ(ω, Fπ(ϕ,Φ(x)))

)
+
λ
2
νϕ,x

(
F′π(ϕ,Φ(x), v)

)
,

(4.9)

where P2,` is the space defined in Definition 4.64.6, but the functions are considered
to be in the Sobolev space W2,`(X) instead of smooth.

Proposition 4.10. Let πX : X → B be a holomorphic submersion with a fibrewise cscK
structure (ω, I) and let πY : Y → B be a deformation of X → B with complex structure J.
Let Vπ be the Kuranishi space based at I and let v0 ∈ Vπ represent the complex structure
J. Assume that
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1. (ω, J) is an optimal symplectic connection;

2. the relative automorphism group

Aut(πY) :�
{

f ∈ Aut(Y,HY) | f ◦ π � π
}

is discrete.

3. the group Aut(Xb ,Hb) is independent of B, and will be denoted G.

Then for any small deformation v of v0 in V+
π there exists a pair (x , v) ∈ TVπ such that

(ω,Φ(x)) is relatively cscK and v generates a complex structure J′, and a Kähler potential
ϕ such that

ω + i∂∂̄ϕ

is an optimal symplectic connection with respect to J′, where the ∂, ∂̄ operators are with
respect to Φ(x).

Proof. The proof consists of proving that the operator 4.94.9 is an elliptic operator
with a trivial kernel so that we can apply the implicit function theorem. We note
that this can be done even though V+

π may be a singular complex space. Indeed,
let X → B × V+

π be a family of holomorphic submersions such that the fibre over
0 ∈ V+

π is X → B. By the Kuranishi theorem [4949, §1] we can locally consider a
smooth trivialisation of the family over V+

π such that the complex structures of the
fibrations Xx → B × {x} form a smooth family { Js}.

As before, let I denote the complex structure of X. As we assume that (ω, I , v0)
is an optimal symplectic connection, G(0, 0, v0) � 0. The derivative with respect to
the first component, given by Lemma 4.84.8 and 4.94.9, is

d1G(0,0,v0)(ϕ) � −R∗R(ϕ) − λA∗A(ϕ) � −L̂(ϕ).

The hypothesis on the automorphism group implies that the kernel of the lineari-
sation is empty, so the implicit function theorem guarantees that there exists a
map {

(x , v) ∈ TVπ | x is KCπ-polystable
}
→W2,`(X)

(x , v) 7→ ϕ(x , v)

such that locally around (0, 0, v0)

G(ϕ(x , v), x , v) � 0. (4.10)

The function ϕ(x , v) is smooth by the standard theory of regularity of solutions
to elliptic partial differential equations, applied to the operator G [33, Theorem 41].
Therefore solutions to (4.104.10) produce optimal symplectic connections. �
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4.3 The moduli space of optimal symplectic connections

Let (Y,HY) → B be a relatively K-semistable holomorphic submersion with a
degeneration to a relatively cscK fibration (X,HX) → B. Assume that we have a
relatively Kähler metric (ω, J) on Y that is an optimal symplectic connection. Let
W be the subset of the Kuranishi space Vπ that corresponds to fibrations satisfying
the hypotheses of Proposition 4.104.10. Then W is an open subset of the locally closed
subvariety V+

π described in §4.14.1 by Proposition 4.104.10.

Lemma 4.11 ([2727, Corollary to Proposition 2]). The group Aut(πY) is a subgroup of
Aut(Y,HY) with finitely many connected components.

In particular, under our assumption Aut(πY) is a finite discrete group. Let VπY

be the Kuranishi space of the fibration πY and let

τ : VπY → Vπ

be themapgivenby completeness of theKuranishi space. Ifwedenote τ−1W �: WY ,
then WY is a locally closed subvariety of VπY .

LetY → B ×WY be the Kuranishi family of fibrations which admit an optimal
symplectic connection, with central fibration Y → B. The quotient

WY/Aut(πY) (4.11)

is a local complex space and it is Hausdorff since it is the quotient of a variety by
a finite group. We now explain that we can glue the quotients (4.114.11) to obtain a
global Hausdorff moduli spaceM of fibrations that admit an optimal symplectic
connection.
Remark 4.12. The moduli space M depends on the group G � Aut0(Xb ,Hb). In
other words,M parametrises all fibrations πY : Y → B such that they have discrete
relative automorphism group and such that they degenerate to a relatively cscK
fibration whose fibres have G as their automorphism group.

The following result builds on [3131, Proposition 6.5] and [3030, Lemma 3.8].

Lemma 4.13. Let Y and Y′ over WY be two families of fibrations that admit an optimal
symplectic connection. The group of isomorphisms between Y and Y′ that preserve the
fibration structure, denoted IsomWY (Y ,Y′, B), is proper over WY .

Proof. Let yt → ȳ be a convergent sequence in WY and consider a family of isomor-
phisms ft : Yyt → Y′yt

preserving the projection onto B. Such isomorphisms are
fibrewise isometries with respect to the underlying fibrewise Riemannian metrics.
Therefore there exists a subsequence { ftk }which converges in the Cm-topology to a
fibrewise Cm-isometry f : Yȳ → Y′ȳ [3030, Lemma 3.8]. Moreover, f is a biholomor-
phism because it is the limit of biholomorphic maps. Therefore the convergence
takes place in IsomWY (Y ,Y′, B), which is then proper over WY . �
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The global definition ofM relies on the following lemma, whose proof follows
from [11, XI.6].

Lemma 4.14. LetY → B ×WY be a family of fibrations that admit an optimal symplectic
connection. For any points y , w ∈ WY , the fibrations Yy → B and Yw → B are isomorphic
if and only if there exists an element g ∈ Aut(πY) such that g(w) � y.

Proof. We can prove the lemma for the entire relative Kuranishi space VπY . The
statement follows from:

1. For any y ∈ VπY , the automorphism group Aut(πYy ) is contained in Aut(πY);

2. For any y ∈ VπY there exists an Aut(πYy )-invariant open neighbourhoodUy
such that any isomorphism between fibres of Y|Uy → Uy is induced by an
element of Aut(πYy ).

We begin by proving the second statement. Assume by contradiction that there
exist two sequences {yn} and {wn} both converging to y and that there exist {gn}
in Aut(πYy ) \ Aut(πY) such that gn · wn � yn . Then by Lemma 4.134.13 there exists
g ∈ Aut(πYy ) such that gn → g. Up to replacing gn with gn g−1 and wn with g−1wn
we may assume that g is the identity of Aut(πYy ). Consider the map

Aut(πY) × VπY → H̃1
V

(η, y) 7→ η · y.

By Theorem 2.212.21, this is a local biholomorphism at (id, y). So we have F(id, yn) �
F(gn , wn). Hence gn � id, a contradiction.

The first claim then follows exactly as in [11, p.204]. We report the proof for
completeness. Set

I �
{
(y , g) ∈ WY ×Aut(πyy )

}
.

Then I is equal to Isom(Y ,Y , B). Up to shrinking WY we can assume that any con-
nected component I′ of I intersects {0}×Aut(πY). Let Î �

{
(y , g) ∈ I′ | g ∈ Aut(πY)

}
.

Then Î is non-empty and Zariski-closed. It follows from 22 that Î contains an open
set. Then Î � I′, which concludes the proof. �

To glue the charts (4.114.11), we use the completeness of the Kuranishi space.
Let Y1 → B be another relatively K-semistable fibration which admits an optimal
symplectic connection and is close to Y → B. Then the Kuranishi theorem gives a
map

τ : VπY1
→ VπY

such that a familyY1 → B×VπY1
is isomorphic to thepull-backvia τ ofY → B×VπY .

Consider the composition of this map with the inclusion i : WY1 → VπY1
:

τ ◦ i : WY1 → VπY .

74



4.4 A Weil-Petersson type Kähler metric

Let y1 ∈ WY1 . Then y1 represents a fibrationwith an optimal symplectic connection,
i.e. the image of y1 via theKuranishimap is a complex structure Jy1 such that (ω, Jy1)
is an optimal symplectic connection. Therefore, there is a representative y of Jy1 in
VπY which belongs to WY , so

α :� τ ◦ i : WY1 →WY .

Lemma 4.144.14 allows us to pass to the quotient and obtain an isomorphism

α̃ : WY1/Aut(πY1) →WY/Aut(πY), (4.12)

which is uniquely determined (while α itself might not be). Indeed, the inverse is
constructed by reverting the roles of Y and Y1. Therefore, we can use it to glue the
local charts to giveM the structure of a complex space.

Proposition 4.15. The space M is a Hausdorff complex space with at most countably
many connected components.

Proof. The countability follows from [3030, Theorem 7.3]. We prove the Hausdorff
property. Let Y → B × WY and Y1 → B × WY1 be two families of fibrations
which admit an optimal symplectic connection. Let yt → ȳ be a sequence in WY
and y1t → ȳ1 be a sequence in WY1 and assume that Yyt is isomorphic to Y1,y1t as
fibrations over B. Following the proof of [2727, Proposition 10], we show that Yȳ → B
is isomorphic to Y1, ȳ1 . Let

Ŵ � WY ×WY1 ,

and let Ŷ → B × Ŵ and Ŷ1 → B × Ŵ be the pull-back of Y and Y1 using the
projections of Ŵ onto the first and second component respectively. Consider

Σ � {(y , y1) ∈ Ŵ | Yy → B is isomorphic to Y1,y1 → B}.

It follows from the properness of Isom(Ŷ , Ŷ1 , B) that Σ is a locally closed analytic
subvariety of Ŵ . Therefore ( ȳ , ȳ1) ∈ Σ, which concludes the proof. �

We have proven the following.

Corollary 4.16. There exists a Hausdorff complex spaceM which parametrises holomor-
phic submersions over a fixed base admitting an optimal symplectic connection, with fixed
relative automorphism group.

4.4 A Weil-Petersson type Kähler metric

In this section,wedefine aKählermetric on themoduli space offibrations admitting
an optimal symplectic connection. We do so by describing a relative version of the
theory of Weil-Petersson type metrics developed by Fujiki and Schumacher for
cscK manifolds [3131, Sections 8, 9]. In particular, we first define the Weil-Petersson
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metric locally on the sets WY and subsequently we extend the definition to the
charts WY/Aut(πY) and then to the moduli spaceM.

Consider a family of holomorphic submersions that admit an optimal symplec-
tic connection, denoted by Y → B ×WY , and let Y → B be the central fibration.
Let ωt be also the optimal symplectic connection on Yt → B. For each k sufficiently
large, ωt ,k � ωt + kωB is a Kähler form on Yt , and we denote by ωt ,F its purely
vertical part. LetY →WY be the composition with the second projection.

From Theorem 2.212.21 together with Proposition 2.232.23, for each t ∈ WY there is an
injective map

dtΦ : TtWY ↪→ H̃1
V(Yt) ⊆ Ω0,1(V1,0

Yt
) (4.13)

that identifies a vector α in the Zariski tangent spaceTtWY with a (0, 1)-formvalued
in the (1, 0)-tangent bundle of Yt , which we will also denote by α. The map (4.134.13)
is equivariant with respect to the action of Aut(πY). Therefore we can define an
inner product on TtWY by pulling back the L2-product on Ω0,1(V1,0

Yt
) induced by

the Hermitian metric associated to ωt ,F + ωB. For any α, β ∈ TtWY , its imaginary
part is given by

Ωt(α, β) :� 〈α, β〉ωt ,F+ωB �

∫
Yt

Λωt ,F+ωB Trωt ,F (αβ)ωm
t ∧ ωn

B , (4.14)

where we denote by Λ the contraction of the covariant part and by Tr the trace of
the contravariant part. We give the following definition.

Definition 4.17. The relative Weil-Petersson metric on WY , denoted by ΩWP , is the
two-form {Ωt}t∈WY .

Using the compatibility of the deformations with the Kähler form, we write the
trace in coordinates as

Λωt ,F+ωB Trωt ,F (αβ) � αa
q̄β

b
p̄(ωt ,F)ab̄(ωt ,F + ωB)q̄p

� αa
b̄
βb

ā +ΛωB Trωt ,F (αβ).

Therefore the integral (4.144.14) can be written as the sum∫
Yt

αa
b̄
βb

āω
m
t ∧ ωn

B +

∫
Yt

ΛωB Trωt ,F (αβ)ωm
t ∧ ωn

B .

Remark 4.18. The first term can be split over Yt as∫
B

(∫
Yt ,b

αa
b̄
βb

āω
m
t

)
ωn

B . (4.15)

In particular, it vanishes when α and β restrict to the trivial deformation on the
fibres. This is the case whenY → B ×WY is a family of holomorphic submersions
with rigid fibres, for example.
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We next prove that (4.144.14) is closed and positive definite. Consider for each
t ∈ WY a k-dependent inner product on H̃1

V(Yt), defined using the Kähler form
ωt ,k of Yt :

Ωk ,t(α, β) :�
∫

Yt

〈α, β〉ωt ,kω
n+m
t ,k �

∫
Yt

Λωt ,k Trωt ,k (αβ)ωn+m
t ,k .

The collection {Ωt ,k} �: Ωk is the Weil-Petersson type Hermitian metric defined in
Definition 1.291.29 for any family of smooth polarised varieties. Using Lemma 4.74.7, we
can write in local holomorphic coordinates

〈α, β〉ωt ,k � α
a
q̄β

b
p̄(ωt ,k)ab̄(ωt ,k)q̄p

� αa
b̄
βb

ā + k−1ΛωB Trωt ,F (αβ) + O
(
k−2) .

The expansion in powers of k of ωt ,k reads

ωn+m
t ,k � knωm

t ∧ ωn
B +

kn−1

nm
ωm+1

t ∧ ωn−1
B + O

(
kn−2) .

Then

Ωt ,k(α, β) � kn
∫

Yt

αa
b̄
βb

āω
m
t ∧ ωn

B + kn−1
[∫

Yt

αa
b̄
βb

āω
m+1
t ∧ ωn−1

B

+

∫
Yt

ΛωB Trωt ,F (αβ)ωm
t ∧ ωn

B

]
+ O

(
kn−2) . (4.16)

Then the two terms in the sum (4.144.14) are the first and third coefficients of this
expansion.

We next describe a fibre integral formula for the Weil-Petersson metric on WY .
Let ωY ,k be the relatively Kähler metric on WY such that its restriction to each Yt
is the Kähler metric ωt + kωB, where ωt is an optimal symplectic connection on
Yt → B. Let also ρY ,k be the curvature of the Hermitian structure induced by ωY ,k
on the relative anticanonical bundle

−KY/WY �

∧n+m
VY/WY ,

whereVY/WY denotes the vertical tangent bundle of the fibration Y → WY . From
the fibre integral formula of Theorem (1.301.30), the k-dependent (1, 1)-formΩk can be
written as a fibre integral over the mapY →WY :

Ωk(ωY ,k) � −
∫
Y/WY

ρY ,k ∧ ωn+m
Y ,k +

1
n + m + 1

∫
Y/WY

ScalV(ωY ,k)ωn+m+1
Y ,k . (4.17)

By expandingΩk(ωY ,k) in powers of k, we can find a fibre integral formula for the
Weil-Petersson metric (4.144.14). Since the base B is fixed, the relative metric ωY ,k can
be written as

ωY ,k � ω̂ + kωB ,
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were the restriction of ω̂ to each Yt is the optimal symplectic connection ωt . Then
ρY ,k can be expanded in powers of k as

ρY ,k � i∂∂̄ log
(
kn ω̂m ∧ ωn

B + O
(
kn−1) )

� i∂∂̄ log
(
ω̂m ∧ ωn

B
)
+ O

(
k−1)

� i∂∂̄ log det(ω̂) + i∂∂̄ log det(ωB) + O
(
k−1) ,

where the second line follows from the fact that ω̂m∧ωn
B is a volume form. The k−1-

term is exact, because the twovolume formsωm+n
Y ,k and ω̂m∧ωn

B both induce the class
c1(−KY/WY ). Moreover, det(ω̂) is the relative determinant of ω̂ and i∂∂̄ log det(ω̂)
is the curvature of the Hermitian metric induced by ω̂ on the relative anticanonical
bundle −KY/B×WY . To compute the expansion of the vertical scalar curvature,
Proposition 3.13.1 gives the expansion

Scal(ωk) � Ŝb + k−1 (
Scal(ωB) −ΛωBαWP + pE(Θ(ω))

)
+ O

(
k−3/2

)
,

where Ŝb is the average scalar curvature of the fibres and αWP is theWeil-Petersson
metric on B induced by the relatively cscK degeneration X → B. Then, since ω̂
is an optimal symplectic connection when restricted to each Yt , the vertical scalar
curvature of ωY ,k admits an expansion as

ScalV(ωY ,k) � Ŝb + k−1 (Scal(ωB) −ΛωB α̂) + O
(
k−2) ,

where α̂ is a closed two-form on B. Then the leading order term of (4.174.17) is

I0 � −
∫
Y/WY

i∂∂̄ log det(ω̂) ∧ ω̂m ∧ ωn
B +

1
n + m + 1

∫
Y/WY

Ŝb ω̂
m+1 ∧ ωn

B

The sub-leading order term is the sum of the four integrals

I1 � −
∫
Y/WY

i∂∂̄ log det(ω̂) ∧ ω̂m+1 ∧ ωn−1
B , (4.18)

I2 �
1

n + m + 1

∫
Y/WY

Ŝb ω̂
m+2 ∧ ωn

B ,

I3 � − 1
n

∫
Y/WY

Scal(ωB)ω̂m+1 ∧ ωn
B ,

I4 �
1

n + m + 1

∫
Y/WY

(Scal(ωB) −ΛωB α̂) ω̂m+1 ∧ ωn
B .

We can use this expansion to prove a fibre integral formula in our setting.

Lemma 4.19. The Weil-Petersson metric ΩWP(ωY) (4.144.14) can be written as the fibre
integral

I0 + I2 + I3 + I4. (4.19)
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Proof. It follows from [3131, Lemma 8.5] applied to the family Y → B ×WY that the
two-form defined as the collection of the integrals∫

Yt

αa
b̄
βb

āω
m+1
t ∧ ωn−1

B

is equal to I1. Indeed, working locally in D ⊂ B×WY , Fujiki and Schumacher prove
that one can trivialise the family Y over D as Y0,0 × D such that the horizontal
distribution induced by ω̂ is preserved. Then, given a family {βt} of vertical
deformations of the complex structure ofY0,0 which represent the familyY0,0×D →
D, [3131, Lemma 8.5] gives the equality

i∂∂̄ log det(ω̂) � Tr(∂tβt |t�0∂tβt |t�0),

where ∂tβt is the map (4.134.13). �

Lemma 4.20. The two-form ΩWP is closed and positive-definite on WY .

Proof. Since the map (4.134.13) is injective, the integral (4.144.14) is positive. To prove
closedness, we show that the terms I0, I2, I3 and I4 in Lemma 4.194.19 are closed. The
terms I0 and I2 are closed because they are the fibre integrals of a closed form. The
term I4 can be written as ∫

Y/WY

(ρB − α̂) ∧ ω̂m+1 ∧ ωn−1
B ,

where ρB is the Ricci form of ωB. In particular (ρB − α̂) ∧ωn−1
B is a top degree form

on B, hence it is closed. So I4 is closed. Analogously, I3 is closed. �

Let hWP(WY) be the Hermitian metric on the tangent bundle to WY induced by
the two-form ΩWP .

Theorem 4.21. The Hermitian metric hWP(WY) induces a global Kähler metric on the
moduli spaceM.

Proof. The theorem follows from the fact that the action of the finite group Aut(πY)
is induced by an automorphism of the Kuranishi family, so the Weil-Petersson
metric hWP(WY) is invariant for the action of Aut(πY). Therefore it defines a metric
on the quotient WY/Aut(πY). �

Remark 4.22. Wehave defined aWeil-Peterssonmetric on WY that is independent of
the adiabatic parameter k. This is reasonable from the point of view of describing
the moduli space of fibrations using the optimal symplectic connection alone,
which is only relatively Kähler. However, it is possible that a different kind of a
Weil-Petersson typemetric could be defined by taking a sequence of Kählermetrics
that depend on k, where the adiabatic construction plays a bigger role.
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4.4.1 The determinant line bundle for the Weil-Petersson metric

We construct a line bundle on WY , and hence on the moduli space, such that the
Weil-Peterssonmetric represents its first Chern class. To do so, we appeal to the the-
ory of Deligne pairings [2222], [2323], [55, §1]. Let M → B be a flat, projective morphism
between complex algebraic varieties of relative dimension d and consider d +1 line
bundles L0 , ..., Ld on M. The push-forward of the intersection product of L0 , ..., Ld
is an isomorphism class of line bundles on B, represented by the cohomology class∫

M/B
c1(L0) ∧ · · · ∧ c1(Ld). (4.20)

The Deligne pairing of L0 , . . . , Ld , denoted by 〈L0 , . . . , Ld〉M/B, is a canonical choice
of a line bundle on B such that (4.204.20) is its first Chern class. The construction
is symmetric, multilinear and functorial. Moreover, if h0 , . . . , hd are Hermitian
metrics on L0 , . . . , Ld respectively, the theory provides a metric 〈h0 , . . . , hd〉M/B
on 〈L0 , . . . , Ld〉M/B. Denoting by ω0 , . . . , ωd the curvature forms of h0 , . . . , hd
respectively, the curvature of 〈h0 , . . . , hd〉M/B is given by the fibre integral∫

M/B
ω0 ∧ · · · ∧ ωd . (4.21)

The fibre integral formula for the Weil-Petersson metric on WY of Lemma 4.194.19
is a special case of the expression (4.214.21). To describe it as the curvature form of a
line bundle on WY , we first recall the following result of Fujiki and Schumacher for
the k-dependent Weil-Petersson metric.

Proposition4.23 ([3131, §9]). The k-dependentWeil-Petersson typeKählermetricΩk(ωY ,k)
represents the first Chern class of the line bundle

− 〈−KY/WY ,Ln+m
k 〉Y/WY +

1
n + m + 1

−KY · (HY + kL)n+m−1

(HY + kL)n+m 〈Ln+m+1
k 〉Y/WY , (4.22)

where the constant
ŜY :�

−KY · (HY + kL)n+m−1

(HY + kL)n+m

is the average scalar curvature of Y, and hence of each Yt , with respect to the metricω+kωB.

We use Proposition 4.234.23 to prove the following.

Proposition 4.24. There exists a line bundle D(Y) on WY whose first Chern class is
represented by the Weil-Petersson metric (4.144.14).

Proof. Let Ĥ → Y be the relatively ample line bundle induced by each relative
polarisation Ht → Yt . More precisely, we consider the fibration Y → WY as the
composition of

Y → B ×WY →WY
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so Ĥ is relatively ample with respect to the first projection. Moreover, since the
base B is fixed, we can pull-back L to Y and consider it as a line bundle on Y. So
we can define a relatively ample line bundle Lk overY as

Lk � Ĥ ⊗ kL, (4.23)

whosefibre overYt isLk |t � Ht⊗kL. Its firstChern class contains the relativemetric
ωY ,k , where ω̂ is in c1(Ĥ). We define a line bundleD(Y) →WY by using the fibre
integral formula (4.194.19) and the expansion in powers of k of the line bundle (4.224.22).
Expanding in k the intersection product Ln+m

k , Ln+m+1
k and the expression (4.224.22)

we obtain that theWeil-PeterssonmetricΩWP(ωY ,k) represents the first Chern class
of the line bundleD(Y) given as the tensor product of the line bundles

D0(Y) � −〈−KY/B×WY , Ĥm , Ln〉Y/WY ,

D2(Y) �
1

n + m + 1
−KY/B · Ln · Hm−1

Y

Ln · Hm
Y

(
〈Ĥm+1 , Ln〉Y/WY + 〈Ĥm+2 , Ln−1〉Y/WY

)
,

D3(Y) � −〈−KB , Ĥm+1 , Ln−1〉Y/WY ,

D4(Y) �
1

n + m + 1

(
−KY/B · Hm−1

Y · Ln
) (

Hm+1
Y · Ln−1

)
Hm

Y · Ln 〈Ĥm+1 , Ln〉Y/WY ,

defined using the Deligne pairing. Indeed, by expanding the expression (4.224.22) in
powers of k we see that the sum of the leading order term and the sub-leading
order term is given by

D0(Y) +D1(Y) +D2(Y) +D3(Y) +D4(Y),

whereD1(Y) is given by

D1(Y) � −〈−KY/B×WY , Ĥm+1 , Ln−1〉Y/WY .

However, its first Chern class is represented by the term (4.184.18), which does not
appear in the fibre integral formula for the relativeWeil-Peterssonmetric of Lemma
4.194.19. This concludes the proof. �

We have constructed a line bundle DY on WY whose first Chern class is the
Weil-Petersson metricΩWP(ωY ,k). Let now p : WY →M be the composition of the
maps

WY →WY/Aut(πY) ↪→M ,

where the first map is the quotient by the group action and the second map is the
inclusion of a local chart in the moduli space. It follows from Lemma 4.144.14 that
the orbits of the Aut(πY)-action on WY correspond to isomorphic manifolds in the
family Y → WY . Therefore the line bundle D(Y) is invariant for the action of
Aut(πY) and thus descends to a line bundle D̃(Y) on the quotient WY/Aut(πY).
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Theorem4.25. There exists a line bundleF on themoduli spaceM such that its restriction
to each chart WY/Aut(πY) it is isomorphic to D̃(Y).

Proof. Let WY1/Aut(πY1) and WY/Aut(πY) be two local charts of M with non
empty intersection. Then using completeness of the Kuranishi space there ex-
ists an isomorphism α̃ : WY1/Aut(πY1) → WY/Aut(πY) (4.124.12) which preserves the
relative polarisation (4.234.23) and the submersions onto the base B. By functoriality
of the Deligne pairings, the pull-back α̃∗D̃(Y1) is then isomorphic to D̃(Y). There-
fore, on the intersection of WY/Aut(πY) and WY1/Aut(πY1) there is a morphism
of line bundles χ : D̃(Y1)

∼→ D̃(Y). Let ϕY : D̃(Y) → WY/Aut(πY) × C and
ϕY1 : D̃(Y1) →WY1/Aut(πY1) × C be local trivialisations and, on the intersection,

ψY1Y :� ϕY ◦ χ ◦ ϕ−1
Y1
.

The map ψY1Y , viewed as a function on C is invertible, with inverse ψYY1 . Indeed,
the map χ is an isomorphism because α̃ is. The same argument proves that the
cocycle condition holds. �

The following corollary is a consequenceofTheorem4.254.25 andof [3131, Proposition
1.7].

Corollary 4.26. Any compact analytic subspace ofM is projective.
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