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ABSTRACT

Proper holomorphic submersions can be viewed as both generalising holo-
morphic vector bundles and as a way of studying families of smooth projective
varieties. We consider submersions whose fibres are analytically K-semistable,
thus they each admit a degeneration to a K&hler manifold with constant scalar cur-
vature. On such holomorphic submersions, we introduce and study certain canon-
ical relatively Kéhler metrics, called optimal symplectic connections, which generalise
Hermite-Einstein connections for vector bundles and are defined as solutions to a
geometric partial differential equation.

Using optimal symplectic connections, we first give a general construction of
extremal metric on the total space, in adiabatic classes, generalising results of
Dervan-Sektnan, Fine, Hong. We then construct an analytic moduli space of holo-
morphic submersions admitting an optimal symplectic connection. To do so, we
develop a deformation theory of holomorphic submersions and we combine tech-
niques from geometric invariant theory with the study of the analytic properties of
the optimal symplectic connection equation. We also show that the moduli space
is a Hausdorff complex space which admits a Weil-Petersson type Kahler metric.






Contents

Introduction i

1 Background 1

1.1 Extremal Kdhler metrics . . . ... ... .. .. ... ... ....... 2

1.2 Moment maps and GIT-stability . . . . ... ... ............ 3

1.2.1 Hamiltonianactions . . . ... ... ... ... ... ...... 4

1.2.2  Geometric Invariant Theory . . . ... ... ... . ... ... 5

1.3 Scalar curvatureasamomentmap . . ... ... ............ 7

1.3.1 Complexified orbits and Kahler potentials . . . ... ... .. 13

1.4 Deformation theory of cscKmetrics . . .. ... ... ......... 15

141 Reduction to the finite dimensional problem . .. ... .. .. 17

1.5 The moduli space of cscK manifolds . . . . ... ... ......... 21

2 Holomorphic submersions 23

2.1 Splitting of the functionspace . . . . . ... ... ... ... ... ... 24

2.2 Optimal symplectic connections . . . . . . ... ... .......... 25

22.1 Therelatively cscKcase . . ... ................. 26

2.2.2 Optimal symplectic connections in general . . . .. ... ... 27

2.3 Deformations of fibrations . . . . ... ... ... ... ... ... ... 29

2.3.1 Families of holomorphic submersions . . . .. ... ... ... 32

2.3.2 Relative Kuranishi’s Theorem . . . . . ... ... ... ..... 34

3 Extremal metrics on the total space 41

3.1 Expansion of the scalar curvature . . . . .. ... .. ... ....... 41

3.2 Linearisation of the fibrewisemapv . ... ... ... .. ....... 42

3.3 Linearisation of the optimal symplectic connection equation . . . . . 44

3.4 Automorphisms of the optimal symplectic connection equation . . . 48

3.5 Special Kdhler metrics on the total space . . . . . . ... ... ..... 50
3.5.1 Approximate solutions in the case of discrete automorphism group 51

3.5.2 Approximate solutions in the presence of automorphisms . . 55

3.5.3 Solution to the non-linear equation . . . . . ... ... ..... 58



CONTENTS

4 The moduli space of holomorphic submersions
41 Opennessofthesetting. . .. ... ... ... ... .. .......
4.2 Openness of the space of optimal symplectic connections . . . . . . .
4.3 The moduli space of optimal symplectic connections . . . . . ... ..
44 A Weil-Petersson type Kdhler metric . . . . .. ... ..........

441

Bibliography

The determinant line bundle for the Weil-Petersson metric . .

61
61
66
73
75
80

82



AKNOWLEDGMENTS

First and foremost, I owe many thanks to my supervisors, Ruadhai Dervan and
Jacopo Stoppa. I thank Ruadhai for patiently guiding me through the project of
this thesis and for always explaining with great clarity the underlying motivations
behind the various geometric problems I encountered. I thank Jacopo for consis-
tently presenting me with fresh and captivating perspectives on Kiahler geometry
and my own research and for his constant encouragement and support. I visited
Ruadhai a few times in Cambridge and Glasgow and I thank him for his hospitality
and for funding my travels through his Royal Society University Research Fellow-
ship. My short visit to the University of Cambridge, in particular, has been a most
exciting and memorable experience, and for that I am truly grateful.

I thank Eloise Hamilton, Masafumi Hattori, Eveline Legendre, Julius Ross, Cris-
tiano Spotti and especially Lars Martin Sektnan and Gabor Székelyhidi, reviewers
of this thesis, for many inspiring conversations and for their interest in my work. I
thank my academic siblings Michael Hallam and John McCarthy, my fellow PhD
students at SISSA and particularly Muhammad Sohaib Khalid for sharing our
common interests and perspectives throughout our PhD journeys. I thank Chiara
Ballarino for the many days spent learning math together and for sharing with me
the most gratifying experience of witnessing the spark of an “a-ha moment” in
each other’s eyes.

Special thanks go to Carlo for listening to my confused ramblings about things I
struggled to understand and for helping me turn them into tangible mathematical
concepts, for surviving the pandemic together and for sticking with me from across
the ocean.

Lastly, I wish to thank my friend Chiara, whose great enthusiasm has always
been a source of inspiration, my friend Alessandra, who walked with me through
all stages of education since middle school, and my brother Francesco, who moved
to Trieste just at the right time.






Introduction

A fundamental result in the study of holomorphic vector bundles is the Hitchin-
Kobayashi correspondence, which establishes an equivalence between the slope-
stability of the vector bundle and the existence of a Hermite-Einstein connection.
While the former is a purely algebro-geometric notion, the latter is a condition in
the form of a geometric PDE involving the curvature of a connection. For vector
bundles over a curve, the Hitchin-Kobayashi correspondence is a classical result of
Narashiman and Seshadri [61], and it was extended to higher dimensional bases
by Donaldson [18], Uhlenbeck and Yau [79], Liibke [52], Kobayashi [48].

Both slope stability and Hermite-Einstein metrics can be used to construct
moduli spaces of vector bundles. Seshadri [71] and Newstead [62, 63] gave the
first construction of a moduli space of stable vector bundles over a curve, while
Mumford [58] introduced semistability in the sense of Geometric Invariant Theory
(GIT) to study this moduli space and established its structure as a global GIT
quotient. Fujiki and Schumacher [29] later directly constructed the moduli space
of Hermite-Einstein vector bundles over a fixed compact Kihler manifold using
analytic techniques. These moduli spaces remain a central object of study to this
day, and we refer to Greb-Sibley-Toma-Wentworth [33] for recent work containing
a discussion of analytic and algebraic compactifications.

Motivated by the Hitchin-Kobayashi correspondence, the Yau-Tian-Donaldson
conjecture [80, 78, 21] predicts that an algebro-geometric notion of stability for po-
larised varieties, K-stability, should be equivalent to the existence of Kdhler metrics
with constant scalar curvature. While still open in full generality, the conjecture is
known to be true for Fano varieties, due to Chen-Donaldson-Sun [9, 10, 11]. The
fact that the existence of constant scalar curvature Kédhler (cscK) metrics implies
K-stability is also a theorem of Donaldson [21], Stoppa [73] and Berman-Darvas-Lu
[2]. Both K-stability and cscK metrics lead to the existence of moduli spaces. Anan-
alytic moduli space of constant scalar curvature Kahler manifolds was constructed
by Fujiki and Schumacher [31] in the discrete automorphism case, and extended
by Dervan and Naumann in the presence of automorphisms [13] and by Inoue [45]
to Fano manifolds with K&dhler-Ricci solitons. On the other hand, moduli spaces of
K-stable varieties, known as K-moduli, are an active area of research in algebraic
geometry [75].

Our work falls into the general framework of studying how these two pic-
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tures interact in the context of proper holomorphic submersions. In this thesis,
we focus on the analytic point of view and we study a generalisation of Hermite-
Einstein connections on more general fibrations, called optimal symplectic connec-
tions. Throughout, by a fibration we always mean a proper holomorphic sub-
mersion 1ty : (X, Hx) — (B, L) of a relatively polarised compact Kadhler manifold
onto a compact polarised base, and we assume that the fibres of nx are analyti-
cally K-semistable. We explore the implications of having an optimal symplectic
connection on the existence of special Kdhler metrics on the total space and we
construct the analytic moduli space of fibrations admitting an optimal symplectic
connection. Indeed, one of the main goals of moduli theory besides parametrising
certain geometric objects is to study their behaviour in families. From this point of
view, our construction of the moduli space of holomorphic submersions is a step
towards understanding how projective varieties vary in families.

The easiest and most instructive case to understand the ingredients involved is
indeed the case of projectivised vector bundles. Hong [39] related the existence of
a solution to the Hermite-Einstein equation on the vector bundle with the existence
of a Kdhler metric with constant scalar curvature on the total space. More precisely,
any Hermitian metric on the vector bundle induces a fibrewise Fubini-Study metric
on the projectivisation, and these metrics differ by an automorphism of the fibres.
However, if the Hermitian metric satisfies the Hermite-Einstein condition, then it is
uniquely determined, so that there is a canonical choice of Fubini-Study metric on
the fibres of the projectivisation. This choice allowed Hong to construct constant
scalar curvature Kadhler metrics on the total space.

In the more general case of a polarised fibration with constant scalar curva-
ture Kéahler fibres, tx : (X, Hx) — (B, L), Dervan and Sektnan [14] introduced
optimal symplectic connections as analogous to the Hermite-Einstein connections
for projectivised vector bundles. A relatively symplectic form w on X is called a
symplectic connection in the language of symplectic fibrations because it determines
a splitting of the tangent bundle of X into a vertical and a horizontal part, where
the horizontal vector bundle is defined using orthogonality with respect to w. If
one assumes that the fibres each have a cscK metric, then these metrics can be used
to construct a relatively cscK metric @ on X, but such an @ is not unique if the
fibres have non-trivial automorphisms. An optimal symplectic connection is then
a canonical choice of w, defined in terms of a solution to a second-order elliptic
PDE.

We further extend their definition to the following setting. Let (Y,Hy) —
(B, L) be a holomorphic submersion and assume that the fibres are analytically K-
semistable, i.e. they each admit a degeneration to a cscK manifold. We assume also
that these degenerations vary holomorphically in B, so that we have a degeneration
(X,H) — (B,L) xS of (Y,Hy) — (B, L) to a fibrewise cscK fibration (X, Hx) —
(B, L) parametrised by S € C. Using a relative version of Ehresmann’s theorem
(Proposition 2.19) we take the perspective of varying the complex structure of the
underlying symplectic fibration, from a relatively cscK complex structure I to small

ii



compatible deformations Js which keep m holomorphic. We say that w is an optimal
symplectic connection on (Y, Hy) if it satisfies the geometric PDE

) A
pE(AV (Aa)B(V F’H)) + Aa)B PW) + EV =0. (01)

In this expression y*Fg and pg, are curvature quantities which depend on w, v
is a curvature quantity that depends on the infinitesimal change in the complex
structure and A > 0is a constant. The left-hand side is a smooth function on Y, and
the map pg is the projection onto the global sections of the vector bundle E — B
of fibrewise holomorphy potentials with respect to the relatively cscK complex
structure of X. The vanishing of the first term is the condition for an optimal
symplectic connection in the sense of [14], i.e. where all the fibres are cscK, so our
notion generalises their notion.

In the following, we consider only integral Kédhler classes, although this is not
essential. Indeed all our results hold if c1(Hx) and c1(L) are replaced respectively
by a relative Kéhler class and a Kahler class that do not come from holomorphic
line bundles. Moreover, the base B is considered fixed.

Summary of results

We make use of optimal symplectic connections to prove the existence of cscK and
extremal metrics on the total space Y in adiabatic classes

Cl(Hy) + kC](L) for k > 0.

To this end, we need to be able to choose an appropriate metric on the base manifold
as follows. Let MK be the moduli space of cscK manifolds and let g : B — M¢5¢K
be the moduli map induced by the central family (X, Hx) — B, whose fibres are
cscK. The space MK can be endowed with a Weil-Petersson type Kéhler metric,
and we denote by awp the pull-back of it via 4. This is a smooth semi-positive
(1,1)-form on B.

We first consider the case where the group of automorphisms of (Y, Hy) and of
(B, L) which preserve the map g are discrete. Thus we require that the base admits
a twisted cscK metric with twisting form ap:

Scal(wp) — Apzawp = constant.

Theorem 0.1. Assume that the automorphisms of (Y, Hy) and of q are discrete. Let w be an
optimal symplectic connection and wg be a twisted cscK metric with twisting awp. Then
there exists a constant scalar curvature Kéihler metric on Y in the class c1(Hy) + kcy(L)
forall k > 0.

If we allow the moduli map g of the central fibration and the total space (Y, Hy)
to have automorphisms, the adiabatic limit method produces extremal metrics on

iii



Introduction

the total space. In this case, we have to modify our hypotheses on w and wg as
follows: we require that wp is twisted extremal, i.e.

Scal(a)B) — AwB awp

is a holomorphy potential on B and that w is an extremal symplectic connection, i.e.

« A
PE (AV(AMB (V"Fa)) + Aoy pw) + EV

isaholomorphy potential on Y. We also need some technical assumptions which we
will explain in Section 3.5.2: the group of automorphisms of my acts equivariantly
on the family X — B X S and the extremal symplectic connection w is invariant
under the flow of the extremal vector fields.

Theorem 0.2. Suppose that (B, L) admits a twisted extremal metric wp and (Y, Hy) admits
an extremal symplectic connection w. Suppose also that all automorphisms of the moduli
map q lift to (Y, Hy). Then there exists an extremal metric on Y in the class c1(Hy)+kc1(L)
forall k > 0.

Our results generalise previous works by many authors who consider more
special situations: we already mentioned Hong’s paper [39] about cscK metrics on
the projectivisation of stable holomorphic vector bundles, in the case of a discrete
group of automorphisms. In the presence of automorphisms of the vector bundle,
Bronnle [7] proved the existence of extremal metrics on the projectivisation of vector
bundles given as direct sums of stable bundles. Fine [24] proved the existence of
cscK metrics on the total space of a fibration where all the fibres and the base are
Riemann surfaces of genus ¢ > 2. In this case, the choice of a relatively Kdhler
metric on the total space falls naturally on the hyperbolic metric, and the optimal
symplectic connection condition is vacuous. Dervan and Sektnan [14] proved
that the optimal symplectic connection condition reduces to the Hermite-Einstein
condition on projectivised vector bundles, thus being a genuine generalisation.
Moreover, they prove Theorem 0.1 and Theorem 0.2 in the case of a relatively cscK
fibration. Similarly, McCarthy [55] proved that on isotrivial fibrations, the optimal
symplectic connection condition becomes the Hermite-Yang-Mills condition on an
associated principal bundle.

The proof of Theorems 0.1 and 0.2 is carried out using the adiabatic limit tech-
nique, a strategy which originates in Kdhler geometry in the work of Fine [24]. It
consists of expanding the scalar curvature of w + kwp in inverse powers of k, with
the idea that if k is large the base becomes very large and the curvature is con-
centrated in the vertical direction. In the easiest case of discrete automorphisms,
the optimal symplectic connection condition and the twisted cscK equation on the
base allow one to find a relatively Kéahler metric which is constant to order k~'.
Then one proceeds inductively, adding at each step r a potential idd¢p, in order
to make the scalar curvature constant up to the k=" ~!-term. The implicit function
theorem then allows one to deform the approximate solution to a genuine solution.

iv



Our approach is a version of the one just described, except with two parameters.
We consider a degeneration X — B X S of the fibration Y — B to the relatively
cscK fibration X — B and we expand the scalar curvature of the Kdhler metric
(w +kwsg, J5) in inverse powers of k and powers of s. Then we relate the parameters
k and s by imposing Ak~ = s, for some A > 0.

Our notion of an optimal symplectic connection on a relatively K-semistable
fibration should be the most general condition to ask in order to produce cscK or
extremal metrics in adiabatic classes, provided all data is smooth and the afore-
mentioned hypotheses on the lifting of the automorphism groups hold.

Allowing K-semistable fibres is essential for the construction of the moduli
space of fibrations with an optimal symplectic connection. Indeed, when deform-
ing a fibration with cscK fibres, one cannot expect that the fibres remain cscK.
Analytic K-semistability, on the other hand, is an open condition, and this allows
us to study the local behaviour of families of fibrations with an optimal symplectic
connection. We prove the following result.

Theorem 0.3. There exists a moduli space M that parametrises holomorphic submersions
over a fixed base, with discrete relative automorphism group and which admit an optimal
symplectic connection. The space M is a Hausdorff complex space which carries a Weil-
Petersson type Kihler metric.

We construct the moduli space M by gluing local charts around fibrations that
admit an optimal symplectic connection. If (Y, Hy) — (B, L) is such a fibration, the
local moduli space around Y is given as the quotient

Wy [Aut(mty),

where Wy is the complex space of all the deformations of Y that also admit an
optimal symplectic connection, and we quotient by the action of the discrete group
Aut(my) of relative automorphisms, which is finite.

We explain in some more detail the definition of Wy, which essentially involves
two steps. The first step, explained in §4.1, consists of finding a locally closed
analytic space which parametrises all small deformations of the complex structure
of Y that admit a degeneration to a fibration with cscK fibres. To do so, we use
the theory of deformations of cscK manifolds of Székelyhidi [76] and Brénnle [6]
to develop a theory of deformations of fibrations. More precisely, we prove a
fibration version of Kuranishi’s deformation theorem (Theorem 2.21) that allows
us to parametrise the compatible vertical deformations of the complex structure of
X with a complex space V of harmonic (0, 1)-forms with values in the (1, 0)-vertical
tangent bundle. Working locally in B, we then establish that the deformations of
Y which degenerate to a relatively cscK fibration form a locally closed analytic
subvariety V! of V. We explicitly construct the relatively cscK degeneration using
techniques from GIT; although we do not use it directly, our construction is related
to the Byalinicki-Birula decomposition [4, 46]. This is the key new step in our
construction, not present in other constructions of moduli spaces.
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The second step, which is the topic of §4.2, consists of proving that, in a small
open neighbourhood Wy of the point associated to Y in V7, all fibrations admit an
optimal symplectic connection. The proof of this essentially relies on the implicit
function theorem and employs the linearisation of the equation with respect to the
complex structure. It is here that we use the assumption on the discreteness of the
relative automorphism group.

In the definition of an optimal symplectic connection and in the construction of
the space Wy it is essential to assume that the connected component of the identity
of the groups of automorphisms Auty(Xj, Hp) of the fibres of the relatively cscK
degeneration are all isomorphic. This assumption is considered to be a smoothness
assumption for our setting and a fixed datum in our construction of the moduli
space.

Outlook

We have presented optimal symplectic connections as canonical choices of rela-
tively Kadhler metrics on relatively K-semistable fibrations. To genuinely call them
canonical, optimal symplectic connections should be proven to be unique. In the
relatively cscK case this is a theorem of Dervan, Sektnan [17] and Hallam [34].
We expect that uniqueness holds also in the relatively K-semistable case, up to the
action of the group of automorphisms of the projection my.

While our work concentrates on the analytic aspects of optimal symplectic con-
nections and their moduli space, there are different algebro-geometric notions of
stability that can be defined on fibrations and related to the existence of optimal
symplectic connections. In particular, a fibration version of K-stability was devel-
oped by Dervan, Sektnan [16] and further studied by Hallam [34]. They prove that,
on projectivised vector bundles, fibration semistability implies slope-semistability
of the vector bundle and that the existence of an optimal symplectic connection
implies stability, thus establishing first results in the direction of generalising the
Hitchin-Kobayashi correspondence. Although they work on fibrations with K-
polystable fibres, their definition of stability also makes sense in the relatively
K-semistable case we treat.

It is natural to ask if it is possible to give an algebro-geometric construction
of the moduli space of fibrations based on stability. Such a construction would
lead to the structure of a variety on the moduli space rather than the structure of a
complex space, and would naturally allow singular fibres. In particular, it would
parametrise certain stable fibrations which degenerate to a fibration whose general
fibre is K-polystable. Moreover, the automorphism group of the general fibre of
the degeneration should be fixed.

Hattori later introduced two different notions of stability: f-stability [37], related
to Dervan-Sekntan stability of fibrations, and adiabatic K-stability [37, 38]. The
latter is a condition defined on a fibration for adiabatic classes and involves also
the K-stability of the base. Hashizume and Hattori [36] have constructed a moduli
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space of adiabatically K-stable fibrations over a curve where the generic fibre is
Calabi-Yau, using algebro-geometric techniques. In the special case where the
fibres are all smooth, our moduli space constitutes an alternative construction of
Hashizume-Hattori’s moduli space.

In the construction of special Kdhler metrics on the total space, open questions
remain in the presence of singularities. In [25, §9] Fine explains a possible way
to construct special Kdhler metrics on the total space of holomorphic Lefschetz
fibrations, where a finite number of fibres are singular, but the problem is still
mostly open. Moreover, a key assumption in Theorem 0.2 is that all automorphisms
of the moduli map on the base lift to the total space. When this assumption does
not hold, existence results for special Kdhler metrics were proved by Hong [40]
in the case of projectivised vector bundles and extended by Lu-Seyyedali [51], but
the problem is open on a general fibration, and even for projective bundles sharp
results are not known.

Finally, Sektnan and Spotti [70] prove a similar result to our Theorem 0.2 on
the total space of certain compactified test configurations, where the central fibre
is cscK and the general fibre is just K-semistable. Such a test configuration can be
viewed as a deformation of a compactified product test configuration for the central
fibre. Their proof, however, does not require the extremal symplectic connection
condition but requires that the vector bundle E of relatively cscK metrics is trivial.
It is reasonable to expect that this in fact implies that the extremal symplectic
connection condition is satisfied, thus relating the two constructions.

Outline

We describe briefly the contents of each chapter. In Chapter 1 we give preliminary
definitions and results about Kahler geometry. In particular, in §1.1 we collect
some basic properties of the scalar curvature equation and in §1.3 we describe the
moment map interpretation of the scalar curvature. Then in §1.4 we describe the
relevant definitions and results on deformations of a cscK manifold.

Chapter 2 is a description of the Kdhler geometry of holomorphic submersion.
We describe relative Kdhler metrics and the curvature quantities they induce. Then
we discuss the notion of an optimal symplectic connection in the relatively cscK
case following [14] and we extend it to the relatively K-semistable case. In §2.3 we
extend the theory of deformations of a cscK manifold to the fibration setting and
we prove a relative version of Kuranishi’s Theorem.

In Chapter 3 we prove the existence of a cscK metric on the total space of
the relatively K-semistable fibration: we derive the optimal symplectic connection
equation by expanding the scalar curvature and we study its linearisation. Then
we use the adiabatic limit strategy to prove the existence of cscK and extremal
metrics on the total space.

In Chapter 4 we construct the moduli space of holomorphic submersions ad-
mitting an optimal symplectic connection. We then describe a Weil-Petersson type
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Kéhler metric on the moduli space, along with a natural line bundle.
Chapters 2 and 3 are part of the author’s article [66]. The results of Chapter 4
are contained in the author’s preprint [65].
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Notation

Throughout this work, we consider projective Kdhler manifolds (M, L), where L is
a fixed ample line bundle. Analogously, we work with fibrations ny : (Y, Hy) —
(B, L), where Hy is a relatively ample line bundle and by “fibration" we will always
mean a proper holomorphic submersion. Moreover, by “relatively" we refer to a
property that holds fibrewise: for example, a relatively ample line bundle is a line
bundle whose restriction to each fibre is ample, and a relatively Kihler metric is a
closed two-form whose restriction to each fibre is Kihler.

When working in local coordinates we use the Einstein convention on repeated
indexes. In particular, on fibrations, we denote by

{w!, ..., w™} the vertical holomorphic coordinates; indices are denoted with
the letters a, b,c,...;

{z%,...,2z"} the holomorphic coordinates on the base; indices are denoted
with the letters 7, j, k, .. .;

{CY,..., """} the holomorphic coordinates on the total space; indices are
denoted with the letters p, g, 7, .. ..

We also use the following notation convention:

o the space of holomorphic vector fields which admit a holomorphy
potential
[} the space of holomorphy potentials

grad” f symplectic gradient of the function f
Vo f Riemannian gradient of the function f

Hn the space of almost complex structures | on Y compatible with the
relatively symplectic form and such thatdno [ = Jgodn

Aut(my) the group of biholomorphisms of Y that lift to Hy and preserve the
projection

K the group of fibrewise Hamiltonian isometries that preserve the pro-
jection
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Chapter 1

Background

In this chapter, we describe the theory of special Kdhler metrics and of compatible
deformations of the complex structure. We then explain the infinite-dimensional
moment map picture for the scalar curvature and a finite-dimensional reduction
in the case of constant scalar curvature.

We begin by fixing the notation. Throughout, we always work with projective
Kéhler manifolds, that is smooth projective varieties endowed with an ample line
bundle and denoted by (M, L). We call the pair (M, L) a polarised Kihler manifold,
and the ample line bundle L a polarisation of M. We consider the polarisation to be
a fixed datum of the various problems we describe.

Let w be a Kdhler form on M in the first Chern class of L and let ] be the complex
structure of M. We denote by ¢ = g(w, J) the Riemannian metric on M induced by
J and w, i.e.

g('/ ) = a)('/ ])

We will often call either the pair (w, ) or the Kadhler form w alone a Kéihler metric.

Definition 1.1. The Ricci curvature of w is the two-form
Ric(w, ]) = —i&;éllog w".

The scalar curvature of the Kahler metric (w, J) is a smooth function on M defined
as the contraction of the Ricci curvature:

Scal(w, J) := AyRic(w, |).

We are interested in special Kdhler metrics, where the scalar curvature is sub-
ject to certain constraints. Among those, we often consider Kidhler metrics with
constant scalar curvature, where the constant is given by the intersection product

n (M) - cr(L)"!

5=
c1(L)"

In particular, Sisa topological constant fixed by the polarisation.



Background

1.1 Extremal Kahler metrics

In this section, we recall some basic definitions and results on Kdhler manifolds and
the scalar curvature map; we refer to [77, Chapter 4] for an exhaustive discussion.
Let (M, L) be a Kdhler manifold and let (w, ]) be a Kdhler metric. A smooth function
h on M is called a holomorphy potential if the (1, 0)-part of the Riemannian gradient
of 1, denoted by V;’Oh, is a holomorphic vector field.

Definition 1.2. A Ké&hler metric (w, ) on M is extremal if
QVé’OSCal(a}, =0,
i.e. if its scalar curvature is a holomorphy potential.

In particular, constant scalar curvature metrics are extremal. In the study
of the existence of extremal and cscK metrics, it is essential to understand the
linearisation of the scalar curvature, which can be written in terms of a differential
operator called the Lichnerowicz operator. When linearising the scalar curvature
function, we can either fix the complex structure | and vary the Kéhler form w or
fix w and vary J. In this section, we consider the complex structure | as fixed, and
we describe the linearisation of Scal(w, |) when we vary w in the cohomology class
c1(L). In the next section we will describe the linearisation in the J-variable and
the relation between the two. To avoid any confusion, in this section we write the
scalar curvature as a function of w alone, Scal(w). The set of Kdhler metrics in the
same Kahler class of w with respect to | is

Ki(w) = {w’ €ci(l) | @' = w +i9;d;¢ for some ¢ € C¥(M, R)}. (1.1)

Fixing a reference Kéhler metric @ € c1(L), we can then describe the linearisation
of Scal(w) in the direction of a Kihler potential ¢.

Definition 1.3. Let D : C*(M, C) — QY%(TPM) be the operator
D(p) = QV;OQD.

The Lichnerowicz operator is the composition D*9D, where D" is the adjoint defined
with respect to the L%(g)-inner product.

It can be written explicitly as follows:
* . ©3 9 1
D*D(p) = Aé((p) + (Ric(w), iddep) + E(VScal(a}), Vo).
The Lichnerowicz operator is a 4th-order elliptic operator. Its kernel, which by
compactness is the kernel of O, coincides with the space of real holomorphy
potentials on M. In particular, it is clear from the definition that w is an extremal

metric on M if and only if the scalar curvature of w is in the kernel of . The
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1.2 Moment maps and GIT-stability

linearisation of the scalar curvature in the direction of a Kéhler potential ¢ can be
written in terms of the Lichnerowicz operator as

_D'D(p) + %(VScal(a)), Vo).

In particular, the linearisation at a constant scalar curvature metric is given exactly
by the Lichnerowicz operator.

We next describe the linearisation of the scalar curvature at an extremal metric.
We denote by b the space of holomorphy potentials and by by the space of holo-
morphic vector fields which admit a holomorphy potential. Solving the extremal
equation means finding a Kéhler metric w such that

Scal(w) - f =0

for some holomorphy potential f. If we change @ to w+idd¢, then the holomorphy
potential f changesto f + %(V f, V). Therefore, an extremal metric in the Kahler
class of w is a zero of the operator

C®(M,R) xh — C®(M,R)

1.2
(¢, h) > Scal(w + iddep) — %(Vf,Vgo) - f. (-2
The linearisation G of this operator at a solution is given again by the Lichnerowicz
operator itself: G(¢,0) = -D*De.

We end this brief overview of extremal and cscK metrics with a description
of their automorphism group. Let Aut(M, L) be the group of automorphisms of
M which lift to L and let f) be its Lie algebra. Let Isom(M, w) be the group of
holomorphic isometries of the Kahler metric (w, J) and let f be its Lie algebra. A
well-known result of Matsushima and Lichnerowicz states that when w is cscK,
the group Aut(M, L) is reductive [54, 50].

Theorem 1.4. Suppose that there exists a constant scalar curvature Kihler metric on M.
Then

bo = To & Jo.

The above theorem is known as the Matsushima criterion or the Cartan decompo-
sition. For an extensive discussion on the interplay between the existence of special
Kéhler metrics and the groups of automorphisms of the complex, Riemannian and
symplectic structure we refer to [32, §3.4].

1.2 Moment maps and GIT-stability

In this section, we briefly describe the definition of a Hamiltonian action of a
compact Lie group on a symplectic manifold. We explain how moment maps are
used to take a quotient of a symplectic manifold with what is called the symplectic

3
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reduction. We also describe some features of Geometric Invariant Theory (GIT),
which also allows us to take a quotient of a projective variety with respect to the
action of a complex Lie group. The Kempf-Ness Theorem 1.12 relates the two
constructions.

1.2.1 Hamiltonian actions
Let (M, w) be a symplectic manifold.

Definition 1.5. A vector field 1 is Hamiltonian with respect to w if there exists a
function h € C*(M, R) such that

w(n,-) = —dh.
We say that & is the Hamiltonian function of 1.

On a Kéhler manifold 1 = JV¢(h), where V¢h is the Riemannian gradient of .
A Hamiltonian vector field with Hamiltonian # is also called the symplectic gradient
of h, and denoted by grad“h.

Let G be a Lie group that acts on M, and assume that the action preserves the
symplectic form, i.e. for any ¢ € G, §"w = w. Let g be the Lie algebra of G. For any
element f € g, the infinitesimal action of f is the vector field

d
ox(f)= g;| (exp(=tf)-x)
Definition 1.6. Let G act on (M, w) by means of symplectomorphisms. We say that
the action is Hamiltonian if there exists a moment map

pu:M—g

that is equivariant with respect to the G-action on M and the co-adjoint G-action
on the dual Lie algebra g* and such that for each x € M

dlps, f) = w(=, 0x(f)),
i.e. (u, f) is a Hamiltonian function for the vector field o,(f) on M.

It is clear from the definition of a Hamiltonian vector field that the Hamilto-
nian function is only unique up to a constant. The moment map then chooses a
Hamiltonian function for the infinitesimal vector field.

An important feature of Hamiltonian actions is that they allow us to take a
symplectic quotient of a projective manifold. Assume that K is a compact Lie
group that acts on M and that the action is Hamiltonian. Since the moment map
is equivariant, its level sets that are preserved by the co-adjoint action are also
preserved by the group action. Moreover, the origin of t* is always fixed by the
coadjoint action.



1.2 Moment maps and GIT-stability

The symplectic quotient is defined as

uH(0)/K.

This orbit space was first considered by Marsden and Weinstein [53] and Meyer
[57]. In fact, it is a theorem of Marsden and Weinstein that if the action on y‘l(O) is
free and proper the symplectic quotient carries a symplectic form. More generally,
there is a stratified symplectic structure on p~1(0)/K [72] such that each leaf is a
smooth symplectic manifold. The symplectic quotient is also called the symplectic
reduction of M by the action of K, and denoted by M /™4 K.

1.2.2 Geometric Invariant Theory

In this section, we briefly review some basic notions in Geometric Invariant Theory
(GIT). We refer to the books of Mumford-Fogarty-Kirwan [59] and of Newstead
[63] for extensive discussions and details. The main goal of Geometric Invariant
Theory that we describe is to take a geometric quotient of a projective variety M
with respect the action of a complex Lie group G, such that the quotient is again a
projective variety. To do so, GIT introduces a notion of stability for the points of M
and defines a quotient of stable orbits.

Let M C CP“ be a smooth projective variety. Let G be a complex reductive Lie
group acting on M as a subgroup of SL(d + 1, C), so that the projective embedding
of M is G-equivariant. In particular, the action of G on CP? lifts to an action on the
line bundle O(—1) and it restricts to an action on the affine cone M of M. This lift
of the action is called a linearisation of the action, and it determines the definition
of stability and of the GIT quotient, as we now explain.

Let 7)1 be the homogeneous ideal of C[zy, .. ., z;] defining M. Then the homo-
geneous coordinate ring of M is the graded ring

R(M) = Clzq, ..., 241/ T = ) H'M, Ou(r)).

Let R(M)® be the graded ring of G-invariant sections

RM)® = @D H'(M, Opm(r)°.
r
Nagata’s theorem [60] (see also [63, Theorem 3.4]) guarantees that, since G is
reductive, R(M)C is finitely generated. The GIT quotient of M by G is defined as
M /| G := Proj R(M)°.

To understand the definition more geometrically, we introduce the notion of GIT
stability.

Definition 1.7. Let x € M and X € Op(1) be a lift of x. We say that is

5
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1. semistable if there exists a non-constant G-invariant homogeneous section s in
HO(M, Opm(r))€ such that s(x) # 0;

2. polystable if it is semistable and the orbit G - X is closed;
3. stable if it is semistable, its stabiliser is finite and the orbit G - X is closed.

A point that is not semistable is called unstable. The set of semistable points is
denoted by M**.

In particular, the GIT quotient is the image of M under the birational map
M > P (HO(M, OM(r))G)

for r > 0, and semistable points are the ones where the map is actually defined.
We can then view the GIT quotient as parametrising the semistable orbits of the
action of G on M. More precisely, we can think of M // G as the quotient of the
M?* by the equivalence relation that identifies two points if and only if the closures
of their orbits have non-empty intersection. The GIT quotient then may identify
strictly semistable orbits, while it is a geometric quotient on stable orbits. We have
the following uniqueness result for polystable points.

Lemma 1.8 ([43, Corollary 5.13]). Let G be a reductive group acting linearly on M C CP?
and let x € M be a semistable point. Then the closure of the orbit G - x contains a unique
polystable orbit.

Although we have given all the definitions for a projective variety, we can take
a GIT quotient also of an affine variety [63, §3] [43, §4.5, §4.6]. In this case, we
give the following definition of stability that incorporates the choice of a standard
linearisation.

Definition 1.9. Let A? be an affine space of dimension d and G a reductive affine
group acting on it. Let (z1, ..., z4) be a system of coordinates on A%, The space Al
can be embedded in the projective space P as a coordinate chart with the map

(z1,...,zg) > [Tz ... zg).

We extend the action of G to an action on P? by acting trivially on the first coordinate.
Let x € A9 and let X be its image in P4. We say that x is semistable, polystable or stable
if it is with respect to the trivial linearisation.

In particular, the polynomial P(z) = zg is a G-invariant homogeneous polyno-
mial that does not vanish at any point of A?. So every point of A is semistable.

Remark 1.10. The fact that every point is semistable holds because we defined the
action on P? to be trivial on the first homogenous coordinate. In principle, one
can choose to extend the action in a non-trivial way and can still define stability
as above, but unstable points might appear. We do not treat this case here, so we
have included the trivial extension of the action in the definition of stability.

6



1.3 Scalar curvature as a moment map

The Hilbert-Mumford criterion [59, Theorem 2.1] is a useful way of establishing
the stability of a point by looking at the 1-parameter subgroups of G. If 1-parameter
subgroup p(t) : C* C G acts on a point x, then lim;_,o p(t) - x is a fixed point for the
action of p(t), so p(t) acts on the line O,(—1) that x represents. Moreover, p(t) acts
on the line by multiplication for t*, where a = a(p, x) is the weight of the action.

Theorem 1.11 (Hilbert-Mumford criterion). A point x € M is
1. semistable if and only if a(p, x) < O for all 1-parameter subgroups p(t);

2. polystable if and only if a(p, x) < 0 for all 1-parameter subgroups p(t) and a(p, x) =
0 holds if and only if lim;_,o p(t) - x does not lie in the orbit G - x;

3. stable if and only if a(p, x) < O for all 1-parameter subgroups p(t).

The GIT quotient is intimately related to the symplectic quotient and the the-
ory of moment maps by the Kempf-Ness theorem [47], [59, Theorem 8.3]. Let
(M, Om(1)) be a polarised variety with a Kédhler form @ € c1(Om(1)). Let G be a
reductive Lie group acting on M such that the action of G lifts on Op(1). Let K be
a maximal compact subgroup such that the action on M is Hamiltonian.

Theorem 1.12 (Kempf-Ness). There exists a moment map  for the K-action on M such
that:

1. a G-orbit is semistable if and only if its closure contains a zero of the moment map;
this zero is in the unique polystable orbit in the closure of the semistable orbit;

2. the inclusion of u=(0) in M*$ induces a homeomorphism

M/ G = u " (0)/K.

The Kempf-Ness theorem is one of the first instances of what has become a
guiding principle in the study of many geometric problems, including the one
treated in this thesis, and it serves as a motivation for studying similar problems
in the infinite-dimensional setting. When the group and the variety are infinite-
dimensional, a moment map is often a differential operator, so finding a zero of the
moment map means finding a solution of a geometric PDE. Conversely, proving
that an equation is a moment map for the action of a group is then the first step
towards establishing a relation with an algebro-geometric stability condition.

1.3 Scalar curvature as a moment map

In this section, we focus on the moment map interpretation of the scalar curvature,
due to Fujiki [28] and Donaldson [19]. For details and proofs see also [67, Chapter
1]. Indeed, the scalar curvature function can be viewed as a moment map for the
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action of an infinite-dimensional Lie group on an infinite-dimensional space, as we
now describe.

Let (M, w) be a symplectic manifold, and consider the infinite-dimensional
space of compatible almost complex structures:

# ={J] : TM — TM almost complex structure compatible with w}.
The tangent space at a point | is given by
T) 7 ={A:TM - TM | JA+ A] =0and w(u, Av) + w(Au,v) = 0}.

Fix now | € _¢Z integrable complex structure and A € Tj_#. Consider the
Riemannian metric g; on M induced by | and w by gj(-,-) = w(-, J-). Using the
symmetry of g; we have

g1(Au,v) = w(Au, Jv) = —w(u,AJv) = w(u, JAv) = g;(u, Av),

so the bilinear form (u, v) — gj(Au, v) is symmetric. Moreover, since A] + JA =0,
Amaps TY'M to T"'M and T%*M to TP M, where the splitting is considered with
respect to J. Since A is real, it is uniquely determined by one of the two restrictions,
and we take A : T%! — T'9. This means that we may identify

T 7 «— T} 7 = {a e Q"(TYM) | w(a(u),v) + w(u, a(x)) = 0}.

Now, if A € T;_#,also JA € T #,so ¢ has a complex structure, which we denote
by J. Moreover, it has a Hermitian inner product

a)n
<A/ B)] = / <A/B>g;_,
M n!
and the two combine to give a Kdhler form, given at the point | by

So _# is an infinite-dimensional Kdhler manifold. Inside ¢, we consider the
complex subspace _#"t of integrable almost complex structures of #. Its tangent
space is given by those a € T?’l ¥ such that da = 0.

Consider the group of Hamiltonian symplectomorphisms of (M, w), denoted
by ¢. This is the infinite-dimensional Lie group of time-one flows of Hamiltonian
vector fields on M, and it acts on ¢ by pull-back:

Je 7,09 ¢ J=dplo]odo.

Lemma 1.13. The Lie algebra of & can be identified with the space C;’ (M) of the smooth
functions on M with w-average zero.



1.3 Scalar curvature as a moment map

Proof. Consider a 1-parameter subgroup {¢:} of 4. Then ¢;w = w. So, denoting
by n; the vector field which time-one flow is the symplectomorphism ¢;, we have

Ly,w=0.

By the Cartan magic formula, dw(7¢,-) = 0. Therefore, 1; is Hamiltonian vector
field with some Hamiltonian function #. We can assume that & has mean-value
zero in M, as the Hamiltonian function is unique up to a constant. So Lie(¥) =
Cy(M). O

The following theorem is due to Fujiki [28] and Donaldson [19].

Theorem 1.14. The action of & on ¢ is Hamiltonian with moment map

p: 7 — Lie(9)

~ 1.3
J + Scal(w, J) = S. (1.3)

If | is integrable, Scal(w, ]) is the scalar curvature of the metric g;. Otherwise,
it is the Hermitian scalar curvature of the Chern connection on T M, which is not
the same as the Levi-Civita connection in general. In particular cscK metrics on M

correspond to ] € _# ™ such that p(J) = 0. The function Scal(]) — S is viewed as an
element of C°(M)* by identifying Lie(4)* with its dual via the L*(w)-product on
M, ie.

¢ — (Scal(w, J) - S, O)ES

We next introduce two operators: the infinitesimal action of ¢, denoted P, and
the differential of the scalar curvature, denoted Q. Consider the scalar curvature
map with respect to the complex structure:

S: 7 — CJ(X) 14
]|—>Scal(a),])—§. '

For fixed | € #, the infinitesimal action of ¢4 on _# is given by the operator
P:CyM)—T; 7
hv— L,,],

where 1, is the Hamiltonian vector field with Hamiltonian function i. Let Q be
the derivative at | of the map (1.4), i.e.

Q:T; 7 — Cy(M)

Ar— d;S(A). (1.5)

We next show that the operators P and Q are adjoint and how they are used to
prove that the map (1.4) is a moment map. These operators and their properties
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play a central role throughout this work. In particular, the operator P is used also
in §1.3.1 to define a notion of complexified orbits of the action of the group ¢ on
7, even if 4 does not admit a genuine complexification. In §1.4 we use again the
operator P to describe deformations of cscK manifolds and a version of Luna’s slice
theorem. We will introduce a relative version of P in §2.3.2 and we will use it to
describe deformations of holomorphic submersions with a fixed base.

We begin by giving an alternative definition of P.

Lemma 1.15. The operator P can be written as

P(h) =2]dn," +2] @), (16)
where 1y, is the Hamiltonian vector field with Hamiltonian function h.

Proof. Recall that, by definition of the Lie derivative, for any vector field &
(Ly, D) = [, JE = Jnm, €]

In coordinates, we write & as £°0, + & d’ad-, and we have

Le(00) = £(20) =i0a(8) ~ ] (£00) +/(0u(6)) = =21 (2157)
—— —_———
=0 =0
and analogously L¢](d;) = 2i (95E°) Ic - Plugging in the expression for the Hamil-
tonian vector field 1y, = wc”l&d-h dc + w9.h dj we obtain
L3,](9a) = =2i04 (e )dy,
L,,](95) = 2id5(wdzh)d..

Thus ) B
L, ] =2]95(w 9 h)d. ® dz” +2]da(w 1)y ® dz”.

On the other hand dn}"* = dj(w°99h)d. ® dz°, so

Ly, ] = 2]8_1],11’0 + 2]91721’0,
which proves the statement. m]

In light of Lemma 1.15, we can and will modify our operator P and consider as
its definition the following:

P:CY(M) — T}'O 7 )
h— 8_172’0. '

Moreover, if | is integrable, | L, ] = L}, ], so

o+ n,°) = =2] Ly, ] = 2Ly, J.

10



1.3 Scalar curvature as a moment map

Remark 1.16. Fix | € _# integrable complex structure. Let h € Cj°(M) and 7, be the
associated Hamiltonian vector field. Using the definition of a Hamiltonian vector
field, the Cartan magic formula and the relation w(Ju, v) + w(u, Jv) = 0, we have

Liyw = dw(Jnn, ) = —d(@(n, J)) = =d(=dh(])) = d(Jdh).
If ] is integrable, by writing the expression in local coordinates, we obtain that
Ly, =d(Jdh) = —2iddh. (1.8)

The fact that (1.3) is a moment map means by definition that the L2-inner
product (u(]), ¢) is a Hamiltonian function for the infinitesimal vector field .£, ol
ie.

dt

<‘Ll, ¢>(]t) = Q]o(fOr Lr](p]O)-

t=0

By writing the moment map condition in terms of P, Q, for A € T;_#, we obtain
the following relation:

(QUA) 92 = - (51700, 4) = 1 (4,317 = 14, 3P = 34, PO

Therefore Q* = %P, and conversely P* = 2Q. The operators Q and P are thus
adjoint.

Remark 1.17. Let J1, J» be two almost complex structures compatible with @, and
assume that [, = f*J; for some f € Diff(M). Denoting by g(Ji,w), i = 1,2 the
corresponding Riemannian metrics, we have

g, @)= g, (f ) w).

If moreover f € ¢, we have that g(J1, @) and g(J2, w) are isometric.

Let ©*D be the Lichnerowicz operator with respect to the metric g;. Its coor-
dinates expression is [77, Theorem 4.2]

D'D(P) = g1 g1V Vo VeV = g7 g1V, VeV .
We use this expression to relate the operators P and Q. With the following result
we prove that along the direction given by the infinitesimal action of 4 on ¢, the
derivative of the scalar curvature S is the real part of the Lichenrowicz operator.
Lemma 1.18 ([20]). The maps P and Q satisfy the following property:
Q(P(9)) = Re(D* D). (1.9)

11
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Proof. Start by writing Q as the composition of two operators,
Ql . T]/ c QO,l(Tl,OM) N Ql,O(M)

and
Q; : QM) — C®(M).

The operator Q is defined as

Qi(a) = Re(Vaa“Bde),
fora € T?J/. As for Q», let 0 = 0,dz" € QV0(M). Then

Qa(6) = —div(J6%) = div(ig"* 0,3;)

where 6% is the vector field obtained by 6 by raising the index with the metric g.
Moreover, Q; satisfies the equation

Q2(0)w" = ndO A "1,
We have that
Q(A) = Q2(Q1(4)) = Q2 (Re(V, A% d2")) = ~div (JRe(37V,4%2,))
- _div (Re(i gCEVaA”Bac)) = div (Im(gCBVaA”Bc?C)) (1.10)
—Im (Vc(gCEVaA”E)) .
Let us compose this with the operator
P(¢)0 =3 (£4)"° = 0 (waéagqs) d2° ® 9,.

Hence we obtain
QP(9) = Q (9 (0 950) d2° ® 9,
= Q (ig" VeVi dz* @9,
= 1m (Y, (7Vag" V5Veo))
— Re(D' D),
as claimed. .

We can compare the linearisation (1.9) of the scalar curvature map S, where w
is fixed, to the linearisation of the scalar curvature map described in §1.1, where
the complex structure is fixed and the Kéhler potential varies. When (w, J) has
constant scalar curvature, the linearisation of the scalar curvature coincides with
the Lichenrowich operator, which is real. Thus it coincides with the expression

12



1.3 Scalar curvature as a moment map

(1.9). However, in the proof of (1.9) we do not use any hypothesis on the scalar
curvature being constant, so when the reference metric ¢(w, J) has non-constant
scalar curvature the two linearisations may be different. In the next section, we
will expand on the interplay between fixing the complex structure and varying the
Kahler potential and fixing the symplectic form and varying the complex structure.

1.3.1 Complexified orbits and Kihler potentials

The group ¢ does not admit a formal complexification. Nonetheless, there is a
notion of complexified orbits for the action of 4 on _¢Z, at the infinitesimal level.
These orbits play a role in the interaction between the complex structure and its
deformations and the changes in the Kédhler metric within its Kdhler class.

Lemma 1.19. Let | € _# and let Oy be the orbit of | for the action of 4. Then
T;0; = {JP(h) | h € CT(M)}.

Lemma 1.19 is a consequence of Remark 1.15, where P is related to the infinites-
imal action of ¢. In order to define a formal complexification of ¢, we proceed
by complexifing the tangent space to the orbits. Indeed, we can consider the com-
plexification of the Lie algebra of ¥, i.e. Cj’(M, C). Thus we can complexify the
infinitesimal action P to the operator

PC:CP(M,C) — T; 7 (1.11)
defined as follows: if h = u +iv € C;’(M, C), then
PS(h) = P(u) + JP(v).
The complexified infinitesimal action defines for every | € _# the set
Dy ={(P(h),JP(h)) | h € Lie(¥)}.

Lemma 1.20. 1. For every almost complex structure |, Dy is a subset of T; _#, hence
D is a distribution;

2. The distribution D is integrable.

For a proof of this result in the case of | integrable complex structure, see [78,
Chapter 4].

Definition 1.21. The leaves of the foliation D are defined to be the tangent spaces
to the complexified orbits of 4 or ¢°-orbits.

We next explain that the complexified orbits can be interpreted in terms of
Kéhler metrics in a fixed Kéhler class. Let ] be an integrable compatible complex
structure on (M, w), and consider the space Kj(w) of Kédhler potentials in the class
[w] (1.1). The following rather technical proposition of Donaldson [20, p.17] is the
key property in the interpretation of the relation between ¢°-orbits and K;(w). We
will extend it to the setting of fibrations in Proposition 4.5.
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Proposition 1.22. For every wy € Kj(w) there exist f € Diffo(M) such that f*wg = w
and (M, wg, ) is isomorphic to (M, w, f*]).

Proof. Consider | fixed, and pick a Kédhler metric in the class [w]:
we = @ +2idI.
Using the relation (1.8), a path w; between w and wy, for t € [0, 1] can be written as
W = @ +2itddp = w — td(Jde).

For each t € [0, 1] let 1; be the Hamiltonian vector field

n = grad“’td)t.
Consider the vector field &; = Jn;. Then
d
aa)t = —d(]d¢) = —.E,gta)t, (112)

where the second equality is given again by (1.8). Define {f;,t € [0,1]} to be the
isotopy of the time-dependent vector field &;, i.e.

Sh=a, fi=id

The following result is a standard application of Moser’s trick in symplectic geom-
etry [8, 6.4]: for a smooth family n; of p-forms

d * * dnt
Eft N = fp (-chﬂ]t + E) . (1.13)
Applying the relations (1.13) and (1.12) to w; lead

d .,
afta)t:O,

which implies that f;w; = fiw = w. Let J; be the pull-back f;]. Then, for t =1,
the two Riemannian metrics g(w, f;]) and g(w, J) are isometric, hence the Kéhler
manifolds (M, w, f;']) and (M, w¢, |) are isomorphic. O

In particular, if we fix | € ¢ integrable, from Proposition 1.22 we have a map
F:{p e C°(M,R) | wy € Kj(0)} — 7
¢ Fo] = fi]

Using again equation (1.13), which can be generalised to all tensors, we see that
the differential at 0 of F is given by

(1.14)

d

]t=a

1.
fil=Le] = Lixyw) =T Leyw) = —5P(9)-

. d
doF(¢) = n
t=0 £=0
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In particular, we have obtained that the differential doF(¢) lies in the leaf D.
This means that a variation of the Kdhler form in a given Kahler class for | fixed
corresponds to a variation of the complex structure | in the same ¢°-orbit, for w
fixed. In other terms, the ¥°-orbits of | integrable are in bijection with the space
Kj(w) of Kédhler metrics in the class [w].

1.4 Deformation theory of Kidhler metrics with constant
scalar curvature

In this section we follow Székelyhidi [76], although similar results were obtained
also by Bronnle in his PhD thesis [6]. Let (M, L) be a polarised Kdhler manifold
and let w be a fixed Kéhler form in c1(L). We fix | € _# an integrable complex
structure on (M, w) such that Scal(w, J) is constant. In this section, we describe
the deformations of the complex structure | and we explain which deformations
still define a cscK metric. We will use these results in §2.3, where we describe the
deformations of families of cscK complex structures.
The deformations of the complex structure are encoded in a complex

. _
ceM,0) 5Ty g7 5 QT WM,

where P€ is the complexification of the operator P (1.11). Let H!bethe cohomology
of the complex. Then H! can be described as

A= {a €T, 7 | P a = da :0}. (1.15)
This is a finite-dimensional vector space since it is the kernel of the elliptic operator
o= PP + (9°9)2 (1.16)

on Tj_¢. Consider the group of Hamiltonian isometries of (M, w, ]), denoted by
K: it is the group of functions ¢ € ¢ such that

de~'Jdg = J.

In particular, the group K is the stabiliser of the complex structure | for the action
of 4 which means that, by definition, it is the intersection of ¢ with Aut(M, J).
The Lie algebra of K, denoted by f, consists of smooth functions over M such
that their Hamiltonian vector field is also holomorphic, thus it can be identified
with the kernel of P. The group K can be complexified and from Theorem 1.4 its
complexification is Aut(M, L).

The map (1.14) can be generalised to a map between Sobolev spaces

F:L2—> g2,
¢ = Fy())
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where /]3_2 is the set of almost complex structures on (M, w) with coefficients in
Li_z. This map is K-equivariant, with respect to the natural pull-back action on
L21]

From Kuranishi [49], we may construct a holomorphic embedding

D : V> 7 (1.17)

where V] C H! is a ball around the origin. The map ®; maps the origin 0 to the
reference complex structure J. The group K acts naturally on H' by pull-back,
and hence on Vi, and the map ®; is K-equivariant. Moreover, V; parametrises
¢°-orbits of integrable complex structures near Jy, in the sense that the ¢°-orbit of
every integrable complex structure near Jy intersects the image of @;. The following
theorem is mainly due to Kuranishi [49]. A proof of items 1. and 2. adapted to take
into account the compatibility with the symplectic form can be found in [12, §6].
The third claim is due to Székelyhidi [76].

Theorem 1.23. There exists a ball around the origin V C H'anda K-equivariant map
O:V—- 7 (1.18)
such that ®(0) = | and
1. the ¢°-orbit of every integrable complex structure near ]y intersects the image of @;

2. if two points x and x" of V are in the same orbit for the complexified action of K, and
D(x) is integrable, then their images ®(x) and D(x’) are in the same & °-orbit;

3. Scal(w, D(x)) — S is an element of the Lie algebra of K.

The open ball V is a local slice of the ¥“-action near the reference complex
structure |. We will refer to it as the Kuranishi space and to @ as the Kuranishi
map. Since we allow also non integrable almost complex structure, the slice is an
actual ball. Instead, in the original work by Kuranishi, the set V parametrises only
integrable complex structures, hence it is a complex analytic subspace of our V.
Moreover, while the map @; (1.17) is holomorphic, our Kuranishi map @ (1.18) is
not holomorphic in general: this is due to the fact that ® is perturbed from ®; using
the implicit function theorem in order to meet the third requirement of Theorem
1.23.

Consider the symplectic form on V pulled-back via ®@ from the Kdhler form Q
on 7. We will denote this symplectic form again by €, since it is essentially the
same. Then we obtain a moment map for the K-action on V:

pu:V-ot

_ (1.19)
x b S(w,P(x)) - S,

1One can see this by using the following relation on the pull-back of a Hamiltonian vector field:

F(ép(w)) = Ep(Fw).

16



1.4 Deformation theory of cscK metrics

where t is identified with its dual via the L?-product of functions. So the question
about which deformations of the complex structure | admit a cscK metric can be
restated in terms of finding a K®-orbit which contains a zero of the moment map
u. We will expand on this in the next section.

Until this point, we have considered deformations of the complex structure
of a fixed symplectic manifold and we have treated them as (0, 1)-forms with
values in the (1, 0)-tangent bundle. Another point of view consists in considering
deformations of the manifold M as a family 7 : ¢ — T, where 7t is a smooth proper
morphism and T is a complex space. The simplest example is when T is the double
point Spec C[¢]/&2. However, if we consider also non integrable deformations, we
can consider T to be an open disk.

Definition 1.24. We say that the deformation family is complete if, for any other
deformation family U’ — T’, there exists a map

:T" =T

such that U" = T°U. Moreover, if the differential of 7 at 0 is unique we say that the
deformation family is versal, and universal if 7 itself is unique.

Ehresmann’s fibration theorem [44, Theorem 6.2.2] guarantees that the two
points of view are interchangeable.

Theorem 1.25 (Ehresmann). Let i : U — T be a proper family of differentiable mani-
folds. If T is connected, then all the fibres are diffeomorphic.

Throughout this work, we will make extensive use of Ehresmann’s theorem
to view any family of deformations of a given complex manifold as a family of
deformations of its complex structure. In particular Kuranishi’s Theorem [49]
gives the existence of a versal deformation family centred at M with the complex
structure | and base the Kuranishi space V. Moreover, the Kuranishi deformation
family is complete for nearby complex structures.

1.4.1 Reduction to the finite dimensional problem

In this section we follow Inoue [45, §3] to compute a moment map for the linearised
action of K on the tangent space to the Kuranishi space (see also [64, §3.5]). Such a
computation will be used in the definition of an optimal symplectic connection and
its linearisation. We then give a proof of a theorem of Székelyhidi [76] on finding
a KC-orbit in V which contains a zero of the moment map (1.19).

On V we have the symplectic form () pulled back from the one of ¢ and by
definition the moment map (1.19) satisfies

di (i, F)(©) = Qu(0, Ly, %),

where x € V is a (0, 1)-form with values in the holomorphic tangent bundle and
1)f is the Hamiltonian vector field of f, also denoted by grad® f. We will also use
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the notation o, (f) for the infinitesimal action given by the Lie derivative of x along
the Hamiltonian vector field associated with f.

The origin of V is a fixed point of the action. By identifying ToV with H 1 we
consider on H! the linear symplectic form

Qo(-, -) = Qjy(doD-, dpD-), (1.20)

and the linear action of K induced by the one on V. For any f € f, consider the
endomorphism of H'

Af(t) = do (y = exp(tf) - y),

where by exp(t f) we denote the 1-parameter subgroup of K defined by the element
f € t. It corresponds via @ to the flow of the Hamiltonian vector field 1y on M,

which we denote by p{ . The operator A¢(t) is a unitary operator, since it is linear

and symplectic, because the group K acts by symplectomorphisms on V. Let

Af: i

= 5| A (1.21)

t=0

We have the following properties:
1. Ay is a skew-hermitian endomorphism of (H!, Jo)and A £(t) =exp(tAy);

2. Forve H 1 denote by v a vector field on V such that v |p= v. Then
Ag(0) = 91 limo As(t)o = 3t lizo ((p)¥) = ~(Lyyho = [v,nslo. (122)

Definition 1.26. We define a map v : H! >t by

(o), f) = 2Qp(Af0, 0).

2
The map v can be characterised as a moment map by relating it to the scalar
curvature (1.19) as follows [45, §3]. We begin by computing the second derivative
of the moment map y, as follows:

d? d

e . (u(to), f) T »
d

=3 N (dtou(v), )

t

St )

d
=3 o Qiy(v, qu(tv))
Qo(v, —Af0)

= (v(v), f).
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1.4 Deformation theory of cscK metrics

In particular, written as a matrix product, the above relation becomes
oT - Hesso({u, f)) - v =—-0TQpAf0,

hence the matrix QpA is symmetric. Therefore, given a path v; in H! such that
Ut=0 = vg and dy|=0v; =,

def d 1

d
a . (v(oy), f) = T » EQO(AfUt, 1)

1 1
= EQO(AfUOI v) + EQO(AfU, o)

= Qo(Afvo, )
= Qo(v, (Ly,v)o),

i.e. v satisfies the moment map condition. The following theorem is due to Széke-
lyhidi [76]. We present here a proof, which differs slightly from the original and is
more in line with the techniques used in the following chapters.

Theorem 1.27 ([76]). Let v € V C H' be a GIT-polystable point for the K=-action on H'.
Then there is a point xg € V in the same KC-orbit as v such that p(xo) = 0.

Proof. Since v is GIT-polystable for the linearised action, by the Kempf-Ness theo-
rem 1.12 there is a zero of the moment map v in the same K®-orbit of v. Without
loss of generality, we can assume that v(v) = 0. Hence we have the following
expansion of u along the path tv for small ¢:

2 2

yamzmm+mwmo+%§§thm+oa% (1.23)

By our hypothesis (M, w, ]) is cscK, so 1(0) = 0. Moreover, the differential dop(v)
vanishes, since p is a moment map and the origin is a fixed point of the K-action,
SO

2
,mwzgww+omy (1.24)
By the above computation and the polystability of v, the second derivative v(v)
vanishes. Hence u(tv) = O(t3).

For any x € V, denote by K the stabiliser of x with respect to the K-action, and
by t, its Lie algebra. Then for all f in {,

dx(#(x)/f> = Q, (%, ax(f)) =0,
where oy : f — T,V is the infinitesimal action. Hence for all x in V, u(x) belongs
to f1.
Let us now go back to the path x; = tv and consider the map

pr it > tey
f = ulexp(if)-tov).
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where I, is the Wz'f—completion of f. We next wish to apply the implicit function
theorem to the map
ue: (F5)e = (55) -4

Let D u; be the linearisation of u; at the origin. If we show that
1. Du; is an isomorphism;

2. there exists ¢ such that || (0)|| < m ;
t
then we can conclude that there exists f € (f;; ), such that y;(f) = 0, i.e. there exists
a zero of the moment map u in the same K®-orbit as tv. Since y; is elliptic, by
standard elliptic regularity f is smooth.
To prove the first requirement, let us compute D y;:

Du(f) = <

B = S| (explisf) - (1) = drop 0 ore(f)
=0 0

S S=

For any x € V define Q, = 0,0y, where ¢} denotes the adjoint with respect to the
L2-norm induced by Q. Then

Qx = dx‘u O Ox.
Indeed, for f,h €1,

(Qx(f), Myr2(q) = Q (0x(f), 0x(h)) = dx{, h)(ax(f)).

Now Qy : fy — fi is an isomorphism, thus the first requirement follows by taking
X =to.
To prove the second requirement, we show that there exists 6 > 0 such that for
f € tsuchthat || f]l <0,
1Q7y Il < et (1.25)

where y = exp(if) - v. Indeed, since p;(0) = O (t3), there exists a constant &’
sufficiently small such that ||u;(0)|| < &’t2. If we prove that (1.25) holds, then

I @IQIM < (¢/2) (ct72) < e'e.

In particular, since Qt_y1 coincides with Dy;l atty = exp(if) - (tv), it follows that

&
N O < ==,
1D

where ¢ = ¢’c. The proof of the estimate (1.25) follows exactly as in [76, Prop
8] and we report it here for completeness. There is a constant ¢ such that for all
y =exp(if)-v with || f|| < 6 and for all h € f;-, we have

lloy (i3, = cllkll?,

20
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where () is the metric (1.20) on H'. IfVis sufficiently small, then the metric () can
be bounded below by %QO. Then, since o, (h) = toy(h),

1
lloty(Mlla > Stlloy(h)lla-

It follows that :
(01,01y(h), ) = lloty (M|, = Zt2c||h||,

SO ||Qt‘y1|| < ct™2 ]

1.5 The moduli space of cscK manifolds

Fujiki and Schumacher [31] have constructed a moduli space of polarised cscK
manifolds with a discrete group of automorphisms, using the Kuranishi theory
we described in §1.4. Dervan, Neumann [13] and Inoue [45] extended their result
to the case when the group of automorphisms is not discrete. We conclude this
chapter with a brief discussion of their construction and results, which we will use
in various instances in the following chapters.

Theorem 1.28 ([31, 13, 45]). There is a Hausdorff complex space MK that parametrises
Kiéhler manifolds with constant scalar curvature. The space MK admits a Weil-Petersson
type Kihler metric awp that represents the first Chern class of a line bundle over MK,

In the case of discrete automorphism group, the moduli space is defined locally
around a cscK manifold (M, L) as the Kuranishi space V defined in Theorem
1.23 quotient by the action of the group of automorphisms. More precisely, we
consider the complex analytic subspace V" of V of integrable deformations of the
complex structure of M. Fujiki and Schumacher prove that there exists an open
neighbourhood of the origin of V" where the cscK equation has a solution, using
the implicit function theorem and the fact the automorphism group is discrete.
The local structure of the moduli space is then given as the quotient of V! by the
action of Aut(M, L), which is a finite discrete group. In particular, the moduli space
has locally the structure of a complex orbifold space. When (M, L) has continuous
automorphisms, the local structure of the moduli space is instead that of a GIT
quotient Vi | Aut(M, L).

We next describe the definition of the Weil-Petersson type Kédhler metric on the
moduli space. We start by recalling that the notions of a smooth Hermitian metric
and of a Kdhler metric are well posed on a complex space [31, Definitions 1.1, 1.2].
Let (M, L) be a cscK manifold of complex dimension m and let « — V" be the
Kuranishi family with central fibre (M, L) described with the discussion following
Definition 1.24. In particular, U — Vint is a family of cscK manifolds. From
Theorem 1.23 we get an injective map

do® : ToVi"t — HOM, TVOM). (1.26)
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We use this map to pull-back the standard L2-product on H(M, T**M). More
precisely, let a, € ToV. Then we can consider a and  as harmonic (0, 1)-forms
with values in T*°M, where harmonicity is defined with respect to the Laplacian
type operator (1.16). Then for each t € V™,

ar =, B) = ‘/M Ao, Tro, (@)l

Definition 1.29. The Weil-Petersson metric on V™ is the two-form given by the
collection {ay}.

The Weil-Petersson metric satisfies the following fibre-integral formula.

Theorem 1.30 ([ 13, 31]). The Weil-Petersson metric on V"™ coincides with the (1, 1)-form:

> / wm“—/ pA@™, (1.27)
m+1 Jyyy uw

where S is the average scalar curvature of M and p is the relative Ricci form induced by w
on the fibres of U — V:

awp =

p = iddlog(w™).

To produce an actual Kdhler metric on the moduli space, the two-form (1.27) is
then glued on the local charts V" J/ Aut(M, L). Moreover, for any family rtx : X —
B of cscK manifolds, a Weil-Petersson type form can be defined by the expression
(1.27) as a fibre integral for the fibration 71x. More precisely, mx induces a map

C]SB—>MCSCK

such that the pull-back of the Weil-Petersson metric on MK via g is a semipositive
closed two-form on B and it can be written as the fibre integral (1.27) over X/B.
Moreover, ayp is positive definite if and only if the map (1.26) for the family X — B
is an immersion.
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Chapter 2

Holomorphic submersions

Let mx : X — B be a holomorphic submersion between compact Kdhler manifolds
whose fibres are all smooth and connected. By Ehresmann’s fibration theorem 1.25
the fibres are diffeomorphic. Let 1 be the dimension of B and m be the dimension
of the fibres, so that dim(X) = n + m.

Definition 2.1. A line bundle Hx on the total space X of the submersion 7ty is said
to be relatively ample if its restrictions to the fibres of mx are ample. Similarly, a
representative w € c1(Hx) is called a relatively Kéihler metric if its restrictions to the
fibres of mx are Kdhler metrics.

In the following, we always assume that X admits a relatively ample line bundle
Hx and B admits an ample line bundle L, and we consider the line bundles as fixed.
Thus when we write x : X — B we always mean ntx : (X, Hx) — (B, L).

Let w be a relatively Kdhler metric on X in ¢;(Hx) and wp a Kdhler metric on B
in c1(L). We can define a Kdhler metric on X by taking the relative Kahler metric
w and adding a large multiple of the base metric, pulled-back on X

wr = w +knywp k> 0.

We often omit the pull-back and write w + kwg. The relatively Kédhler form w
determines a splitting of the tangent space

TX =V o HY (2.1)
where V, = T, X, (y) is the tangent space to the fibre, and
HY ={ueTX|wu,v)=0V0 e V,}

In the context of symplectic fibrations w is called a symplectic connection [56, Chapter
6] and the splitting (2.1) induces a splitting on all tensor bundles. We denote by wr
the purely vertical part of w and by w4 the purely horizontal part of w.

In what follows will also need the groups of automorphisms of the projections
.
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Definition 2.2. For ntx : X — B the group of relative automorphisms of the fibration,
or the group of automorphisms of m, is

Aut(mtx) := {f € Aut(X,Hx) | mx o f = nx}.

2.1 Splitting of the function space

In this section, we assume that the fibres of X each admits a constant scalar curva-
ture Kihler metric. We also assume that the spaces H(X},, T X;) of holomorphic
vector fields on the fibre X} are isomorphic as Lie algebras for all b. The following
lemma explains that one can define a relatively Kédhler metric on the total space
which is relatively cscK.

Lemma 2.3 ([14, Lemma 3.8]). Forany b € B, let wy, be a cscK metric on the fibre Xy, in
the class c1(Hx|p). Then there exists a w € c1(Hx) which is relatively cscK.

Denoting by I the complex structure of X, we next explain how the relative
Kéhler metric (w, I) induces a splitting of the space of smooth functions on X. Let

DDy : C*”(X,R) » C*(X,R)
be the vertical Lichnerowicz operator, defined fibrewise as
(D Dyvo)ly, = DDy ¢ly, -

It is a real operator since the fibrewise metric is cscK. By integrating a function
@ € C*(X,R) over the fibres of mx, we define a projection

C®(X,R) — C®(B, R)

P paw™.

X/B

Its kernel is given by the space C;’(X,R) of functions that have fibrewise mean
value zero. A key step in the study of optimal symplectic connections is that we
can further split this space as follows.

Consider a real vector bundle E — B [14, §3.1], whose fibre over b € B is the
real finite-dimensional vector space kero(D; Dj) of holomorphy potentials on the
fibre X}, with mean-value zero with respect to wy. E is well defined as a vector
bundle since we are assuming that the complex dimension of the Lie algebra h(X})
of holomorphic vector fields on X} is independent of b. Its smooth global sections
are

COO(E) = keroz)jvﬂ(v.

In [34, Lemma 2.7], Hallam showed - using the Cartan decomposition for the space
h(Xp) of holomorphic vector fields of the fibre - that E; can be also viewed as
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2.2 Optimal symplectic connections
the vector space of all Kdhler potentials ¢, on X, of mean-value zero for which
wp + 1dI @y, is still cscK. We can split C;’(X) as
Cy(X,R)=C%(E)® C™(R),
where C®(R) is the fibrewise L2-orthogonal complement with respect to the fibre

metric wy, i.e. for all p € keroD; Dy, P € C*(R)

(o, V) = /X PP, =0.

In the end, we obtain
C*¥(X,R)=C>*(B)® C*(E)® C*(R). (2.2)

We denote by pg : C*(X) — C*®(E) the projection.

Since we are interested in deformations of the complex structure of X, some-
times we will denote the vector bundle E as E(w, I) to underline its dependence
on the Kahler metric. Notice that if we change just the relatively Kdhler metric
w to @ + idde, for @ € C®(X), the vector bundles E(w, I) and E(w + idd¢, I) are
isomorphic. We give the following definition.

Definition 2.4. We denote by K the space of all smooth functions ¢ € C*(X) such
that w + idd is still a fibrewise cscK metric.

The following proposition [17, Lemma 4.20] relates the space Kg to the vector
bundle E — B, justifying the notation.

Proposition 2.5. Let ¢ : [0, 1] — Kk be a smooth path. Then for all t
¢t € C*(B) ® C*(E(w + iddq;, 1))

that is to say that, up to a function on the base, ¢y is a fibrewise holomorphy potential with
respect to w + idd ;.

Again, if we want to underline the dependence on the complex structure, we
write Ke(I).
2.2 Optimal symplectic connections

In this section, we give the definition of optimal symplectic connection. We begin in
§2.2.1 by describing optimal symplectic connections on fibrations with cscK fibres,
following Dervan-Sektnan [14]. In §2.2.2 we describe a generalisation of optimal
symplectic connection to fibrations with analytically K-semistable fibres.
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221 The relatively cscK case

Let w € c1(X)be arelatively Kdhler metric. Then w defines two curvature quantities
on X, the symplectic curvature and the relative Ricci curvature.

Definition 2.6. The symplectic curvature of w is a two-form on B with values in the
fibrewise Hamiltonian vector fields given as follows: if v1, v, € X(B),

Fq((v1,02) = [Uf, vﬁ]ve“

7

#

where v]. denotes the horizontal lift.

Let y* be the map which associates to a fibrewise Hamiltonian vector field its
fibrewise Hamiltonian function with fibrewise mean value zero. Thus we consider
y*(F¢), which is a two-form on B with values in C5’(X, R), and we pull it back on
X. Notice that the two-form y*(Fg) depends only on the relatively symplectic form
and not on the complex structure. Moreover, the symplectic curvature is related to
the symplectic connection as follows [14, §3.2]:

wg = Y (Fr) + X,
where g is a two-form on B.

Definition 2.7. The relatively Kéhler form @ induces a Hermitian metric A™ g, on
the top-wedge power of the vertical tangent bundle

/\m (Vl’o = _KX/B-

Explicitly, if A,B € A" VW, we can write locally A = fady1 A -+ A dym and
B = f38w1 A+ A dymn. Then

(A, B)/\mgw = det(gw)fAE-

Its curvature, denoted by p, represents the first Chern class of the relative anti-
canonical bundle —Kx,g. We call p the relative Ricci curvature of w and we denote
by p¢q its purely horizontal part.

We can now give the definition of an optimal symplectic connection according
to [14].

Definition 2.8. Let w be a relatively cscK metric. Then w is an optimal symplectic
connection if

PE (Ay(Awy V' (Fg0) + Ay pat) = 0. (2.3)
This is a second-order elliptic equation on the vector bundle E — B [14, Theorem
4.9]. In the following, we will use the notation @(w, I) = Ay (Aw, Y (Fer)) + Aoy P
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The optimal symplectic connection equation arises from expanding the scalar
curvature of wy in negative powers of k. Indeed, to leading order the expansion
reads R

Scal(wi) = Sp + O (k71),

where the leading order term is the scalar curvature of the fibres, which we assume
to be constant and is independent of b. The left-hand side of equation (2.3) is then
the projection onto C®(E) of the k™!-term of the expansion. x The linearisation of
the equation at a solution is given by the operator R*R [14, §4.3], where

R(pe) = IV pE (2.4)

and the adjoint is computed with respect to the Hermitian metric wr + wg. Here
V(l",o(p E is a section of the holomorphic tangent bundle; the vertical part of (;’V}"/O(pg
vanishes since ¢ € C*(E) and the horizontal part is denoted by the expression
(2.4). The operator (2.4) can be described as follows [14, §4.3]: let D; Dy be the
Lichnerowicz operator with respect to the Kédhler metric wi. It can be written as a

power series expansion in negative powers of k:
DDy = Lo+k ' Li+0(k7?),

where L is the vertical Lichnerowicz operator D, D . Then for ¢, fibrewise
holomorphy potentials

/X(P-El(#})a)m A wg = L<R¢/R§b>w,¢+w3wm A a)g~

This means that the operator R*R can actually be seen as pg o L restricted to
CZ(X). The kernel of R, thus of R*R, consists of fibrewise holomorphy potentials
which are global holomorphy potentials on X with respect to wy.

2.2.2 Optimal symplectic connections in general

Let now (Y, Hy) — (B, L) be a polarised holomorphic submersion with @ € c¢1(Hy)
arelatively Kdhler metric.The following assumptions restrict the class of admissible
fibrations to those whose fibres satisfy a stability property defined in terms of K-
stability. More precisely we assume that:

1. the fibres Y} are analytically K-semistable, which means by definition that
they each admit a degeneration to a cscK manifold X;,. We also assume that
the deformation is compatible with the fibration structure in the following
sense: there exists a holomorphic map 7 : (X, H) — (B, L) x S, parametrised
by a disk S, such that for s # 0, the family (X;, H;) — B is isomorphic to
the original fibration my : (Y, Hy) — B and the central fibration at s = 0 is a
family nx : (X, Hx) — B whose fibres are cscK;

2. the automorphism groups Auty(Xy, Hp) of the fibres are all isomorphic.
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The first hypothesis is a stability assumption. We will refer to the submersion
X — B as the relatively cscK degeneration of Y — B. The second hypothesis holds
if and only if the spaces H(X;, T'YX;) are isomorphic as Lie algebras, which we
assumed in §2.1 to define the vector bundle E — B. It is needed to define optimal
symplectic connections and it is a key hypothesis for the construction of the moduli
space of fibrations in §4.1.

A relative version of Ehresmann’s theorem, which will be proved as Proposition
2.19, implies that we can locally trivialise the family in such a way that all X; are
diffeomorphic. So we can take the perspective of fixing @ and seeing X — B X S
as a family of compatible complex structures {J;} which keep mx a holomorphic
submersion and are all biholomorphic except for Jo.

Let

Fn = { J almost complex structure compatible with w and s.t. dmo J = Jg o drc}.
(2.5)
Compeatibility with @ means that w(J-,J-) = w(:,-) and that wj, o | |x, is non
degenerate and positive definite. The tangent space at I to _#, can be identified
with
T = {A € QY (V) | wp(A, ) + wp(-, A) = 0}, (2.6)
where wr is the purely vertical part of w.

As in §1.4, for any fibre X, let V}, be the Kuranishi space, K; the group of
Hamiltonian isometries and W}, the Kuranishi map (1.18) of the fibre. Let x5, € V},
be such that Wy(x;p) = Js |x,. Let yp be the moment map (1.19). Then we can
define a section of C*(E) as

us(b) = pE (Scalx, (wp, Wp(xs,p))) - (2.7)

Note that W}, may not vary smoothly with b, but when applied to x; ; it gives the
complex structure s |x,. Since J; is a complex structure defined on the whole X,
it varies smoothly with the base, so u; is a smooth section. For each fibre X} we
can linearise the action to the tangent space to Vj, at 0 as in §1.4, so we can define
another section v of E by

v(b) = vp(vp). (2.8)
Here vy, is the moment map defined in Definition 1.26 for the linear action of K; on
HY(X;), and v, € H'(X}) is tangent at 0 € V. Even if v}, does not necessarily vary
smoothly with b, v is a smooth section because there is an expansion

s (b) = ; +0(s%) 29)

as explained in Proposition 1.24, and u; is smooth.

Definition 2.9. We say that the relative Kdhler form w is an optimal symplectic
connection on (Y, Hy) — B if it satisfies the equation

. A
P (Av(Aay )" (F20) + Auypot) + 5v =0 (210)
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2.3 Deformations of fibrations

for some constant A > 0.

The first term is the left-hand side of the optimal symplectic connection equation
(2.3) for fibrewise cscK metrics, and it involves only the complex structure I of the
relatively cscK degeneration. The second term represents the deformation of the
complex structure, in terms of the first-order deformation of the fibres.

Remark 2.10. Similarly to the relatively cscK case, the equation arises by expanding
the scalar curvature of the Kéhler metric (wy, Js) in inverse powers of k and powers
of s and then relating the two parameters to obtain a single expansion. The left-
hand side of (2.10) is then the projection onto C*(E(w, I)) of the sub-leading order
term of such an expansion. We explain the expansion of the scalar curvature in
detail in §3.1.

In §3.3, we will prove that the linearisation of the equation at a solution is given
by an operator

L=RR+AA,

where R is the operator (2.4) and A is obtained by extending the map (1.21) to a
fibrewise map. Its kernel is given by the fibrewise I-holomorphy potentials which
are global holomorphy potentials with respect to Js.

The definition of an optimal symplectic connection can be generalised to that
of an extremal symplectic connection as follows.

Definition 2.11. The relative Kahler form w is an extremal symplectic connection on
Y if

z (pE(G)(a),I)) N %v) _o.

In particular, if w is an extremal symplectic connection, the fibrewise holomor-
phy potential for the complex structure I

h1 = pe (O(w, 1)) + %v (2.11)

is also a holomorphy potential for the complex structure of Y. The definition of
an extremal symplectic connection extends the one given by Dervan-Sektnan on
relatively cscK fibrations [14, §3.4].

2.3 Deformations of fibrations

In this section, we study in more detail the deformations of a holomorphic fibrewise
cscK fibration. In particular, we prove a relative version of Ehresmann’s fibration
theorem in Proposition 2.19, which allows us to view families of fibrations as
families of complex structures in _#; on the same underlying smooth fibration. The
main result of this section is a relative version of Kuranishi’s Theorem 1.23, which
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will be needed to describe the linearisation of the optimal symplectic connection
equation (2.10) and to study the moduli space of its solutions.

We start by giving a description in local coordinates of a first-order deformation
A € Tr_#. Inlocal computations, we make the following notational conventions:

{wl, ..., w™} denote vertical holomorphic coordinates; indices are denoted
with the letters 4, b, c, .. .;

{z!,...,z"} denote holomorphic coordinates on the base; indices are denoted
with the letters i, j, k, .. .;

{ct,..., "™} denote holomorphic coordinates on the total space; indices
are denoted with the letters p, ¢, 7, .. ..

We write A € Tj ¢, locally as

A= A“Edwb ® Dopr + A“j_dzf ® Fupa,

since A takes values in the vertical vector fields. The following lemma explains the
relation between A“E and A“],_.

Lemma 2.12. For A € T;_# we have that:
1. A vanishes on horizontal vector fields;
2. A% = A (wp) (@) g7
Proof. As for the first claim, if u € V, v € H®, then
w(u,Av) = wp(u, Av) = —wr(Au,v) = 0. (2.12)

Indeed, the first equality comes from the fact that Av is vertical and @ coincides
with wr on a pair of vertical vector fields. The middle equality follows from the
compatibility of the deformation with the fibrewise symplectic structure (2.6). The
last equality follows from the fact that v is horizontal. So Av is horizontal, since
the relation (2.12) holds for any u € V; but Av is also vertical. Thus Av = 0. This
proves the first claim.

We prove the second claim. While dy, dg« are vertical vector fields on X, d,;,
d;j are not horizontal in general. So we have a splitting

dzj=¢;+n;  with efeHY, njeV.
Then from w(dye, € ]-) = 0 it follows that
(@)gp 72]13 = (@),
Sonj= (wp)"™(wx), 79@c. Thus we can write the horizontal part of d;; as
£; = 951 — (wp)" () ,79¢ -
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2.3 Deformations of fibrations

Since A takes value in the vertical vector fields, A(e ]-) =0, so
0= _Aaé(wF)dE(w)dj‘awﬂ + Au]r e,
hence the claim. O

The following lemma explains the relation between a | € _#; and the splitting
(2.1) of the tangent bundle of X induced by w, by showing that the elements of 7
in a neighborhood of I differ from I only on the vertical vector bundle.

Lemma 2.13. Any | € _# preserves the splitting of the tangent space TX =V & H<.
Moreover, J(u) = I(u) forall u € H®.

Proof. For the first fact to hold, we have to prove that J(V) € V and J(H®) € H®.

1. Letv € V. Then
dn(Jov) = Jp(dn(v)) =0,

——
=0

so Juv e V.
2. Letu € H”. Then w(u,v) =0 for every v € V. So
w(Ju,v) = -w(u, Jv) =0,
since Jv is vertical by the previous step.

We now prove that indeed J(u) = I(u) forall ] € #; and all u € H“. Consider
for instance a first order deformation I + ¢A. Since A vanishes on horizontal vector
fields by Lemma 2.12, if u € H, (I + ¢eA)(u) = I(u). Let now | be a path in _#;
which joins I to J. Then

dsJs(H) = As(H) =0,

so for all s we have Js(u) = I(u), for all u € H, from which the claim follows. O

In particular, the last part of the proof shows that the horizontal parts of the
operators d, d with respect to I remain the same for any ] in _#;.

Remark 2.14. Let k > 0 be such that w + kwp is a Kédhler form on X. Then 7,
embeds into _# (w + kwp). Indeed for | € 75

wk(]'/ ]) = a)(]'/ ]) + kﬂ*a)B(]', ])
and *wp(J-, J-) = wp(dn]-,dn]-) = wp(Jpdn, Jpdm:) = T ws(:, ).
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2.3.1 Families of holomorphic submersions

In this section, we give a more rigorous definition of a family of fibrations and we
prove a relative version of Ehresmann’s fibration theorem. Families of fibrations
are in particular families of holomorphic maps, for which a deformation theory
has been developed by Horikawa [41, 42], under the assumption that HZ(X, TX)
embeds into H*(X, 7*TB).

Definition 2.15. A family of holomorphic submersions onto B with central fibre
X — B is the data of (X, 7, p, S), where:

1. X, S are complex manifolds;
2. p: X —> Sand T : X — B x S are proper holomorphic submersions;

3. there is a distinguished point 0 € S such that 7t induces 7 : X — B and

p =pr,om.
A family of holomorphic maps (X, 7, p, S) onto B is complete if for any other family
(X', ,p’,S’) with the same central fibre, there exists a map 7 : S’ — S, de-

fined locally on neighbourhoods of the distinguished points, such that the family
(X', ,p’,S’) can be obtained by (X, 7T, p, S) via pull-back using 7.

In order to parametrise compatible almost complex structures, we need to take
into account that all the fibres admit a relative Kdhler metric in the same cohomol-
ogy class as the central fibre (X, ). Following Schumacher [69], we introduce the
definition of a polarised family.

Definition 2.16. A polarised family (p : M — S, y) is a family of compact complex
manifolds with a section y € I'(S, R?p.R) such that )/| M, € H?(M;,R) is a Kéhler
class. Analogously, a polarised family of maps onto B is a family of maps (X, 7T, p, S)
with a section y € I'(S, R?p.R) such that y| x. € H?%(X,,R) is a relative Kihler class
with respect to the projection 75 : X; — B.

The following theorem guarantees that a polarised family exists for a Kah-
ler manifold (M, yp). In the next section, we will prove an analogous result for
holomorphic submersions.

Theorem 2.17 (Schumacher [69]). Let (X, yo) be a Kéihler manifold, with Ay € H*(X,R)
a Kihler class. Let p : X — S be a versal family with central fibre (X, Ao) (which exists by
Kuranishi’s Theorem). Then there exists S’ C S such that Ay can be extended to a global
section y € T(S’, R?p.R), thus (X — S’, ) is a polarised family.

We conclude this section with a proof of a relative version of Ehresmann’s
fibration theorem [44, Proposition 6.2.2]. For a smooth proper morphism p : M —
N with N connected, Ehresmann’s fibration theorem says that the fibres of p are
all diffeomorphic, and more precisely that M is locally diffeomorphic to a product.
To generalise it to fibrations, we need the following definition.
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2.3 Deformations of fibrations

Definition 2.18. Let F : M — N be a smooth map, u a vector field on M, u” a vector
field on N. We say that u and u’ are F-related if

Fogl, =) oF.
Then we can extend Ehresmann’s theorem 1.25 to our setting as follows.

Proposition 2.19 (Relative Ehresmann’s Theorem). Let (X, 7, p,S) be a family of

holomorphic maps onto B with S connected. Then there exists a diffeomorphism T : X —
X X S which commutes with the projections to B, i.e.

X —— XxS

BXxS

Proof. Up to restricting to a segment, we can assume that S is a small open neigh-
bourhood of the origin in R. We can then consider the vector field u = d;, and
view it as a vector field in B X S, denoted by u’. This means that, denoting by
¢!, its flow and pr, : Bx S — S the second projection, u’ is pr,-related to u. It
is a consequence of the implicit function theorem that if F : M — N is a smooth
submersion of manifolds, then for any vector field on N there exists a vector field on
M which is F-related to it. Let then v be a vector field on X which is 7t-related to
u’, i.e.

—

nogl=¢!, on.
Then, using p = pr, o T, we obtain
b gt
po (Pv - (pu op,

thus v is p-related to u. Hence we can define a map

7T:X — XXS
2+ (§,'(2), p(2)),
which is a diffeomorphism with inverse
(x,5) — @5 (x).
Since v is Tt-related to u’, this diffeomorphism commutes with the projections to
B, as required. m]

We can then formalise the degeneration family of fibrations introduced in §2.2.2.
Let (X,Hx) — (B, L) be a polarised holomorphic submersion with w € c1(Hx) a
relatively K&hler metric. Then we consider the following setting: (X, H, 7, p, S) is
a smooth polarised family of maps onto B with central fibration (X, Hx) — B, where
we can assume for simplicity that S is a disk in C. In particular, the line bundle
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H on X restricts to a relatively ample line bundle H; on each fibration X; — B.
Ehresmann’s theorem implies that we can locally trivialise the family in such a way
that all X; are diffeomorphic, so we can interpret the family as a family of almost
complex structures {J;} on X which preserve the projection onto B.

Moreover, since (X, H) is a small deformation of (X, Hyx), wehave thatc;(Hy) =

c1(Hx). Then by Moser’s theorem [8, Theorem 7.2] we can assume that w is rela-
tively Kahler with respect to the complex structures Js, up to modifying (X, H)
by a small diffeomorphism. So we can view a family X — B X S as a family of com-
plex structures on X which keep mx a holomorphic submersion and w a relatively
Kéhler metric.
Remark2.20. A possible example of a degeneration family (X, H, 7T, p, S) is obtained
by assuming that S is one-dimensional and there is an action of C* on S X B which
lifts to (X, H) such that 7 is C*-equivariant. It follows that for s # 0 the fibrations
(Xs, Hs) — B are all biholomorphic. In this context, one can think of the family
(X, H,m,p,S)asa family of test configurations varying holomorphically over B.

2.3.2 Relative Kuranishi’s Theorem

As in the previous section, we consider a holomorphic submersion tx : (X, Hx) —
(B, L) with a relative Kéhler metric w and a complex structure I which is fibrewise
cscK. We require a relative version of Székelyhidi’s and Brénnle’s deformation
theory described in§1.4. Let _#; the space of compatible almost complex structures
defined in (2.5) and T} _#, be its tangent space at a point |. If A € T;_#, also
JA € T} _#7,s0 #n admits an almost complex structure. Consider the map

Py : CP(X,R) — T} 7
P +— o"_(gradwp(p)l’o,

which is the relative version of the map defined in (1.7). Let ﬁ}v be the kernel in
T?’l Y of the operator o

Oy = P(VP:V + (&*8)2
inside T?’l Zr. This is an elliptic operator because P(VP;‘V is trivial in horizontal
directions, where the adjoint is computed with respect to any Kdhler metric on X

which restricts to wr vertically. So its kernel is a finite dimensional vector space
and it can be described as

ﬁ}vz {aeT?’ljan;a:O:éa}.

Fibrewise, O restricts to the operator (1.16) and ﬁ%, restricts to the vector space

described in (1.15). In particular, FI}V depends only on the vertical part of the
metric, wr.

Consider the smooth fibre bundle K — B whose fibre K is the stabiliser of
I|x, for the ¥p-action. in particular, K coincides with the group Isom(X;, wp) of
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2.3 Deformations of fibrations

biholomorphic isometries of the fibre. Thanks to our hypothesis 2, the groups
K}y are finite-dimensional with dimension independent of b. The group of global
sections of K is

Ky :=Isom(ntx, w) = {f cAut(X) | ffo=wand xo f = nx}. (2.13)

We next prove a relative version of Kuranishi Theorem, adapted from Chen-Sun
[12, §6].

Theorem 2.21 (Relative Kuranishi Theorem). There exists a neighborhood of the origin
Ve C H}V and a Ky-equivariant holomorphic map

W:Vy— 7n
such that:
1. W) =1I;

2. Ifvy,vp € Vand vy, € Kf- V2|, for all b, and if V(v ) is integrable, then ‘P(Ul)|xh
is in the same &, -orbit as W(v2)|x,;

3. Forany | € ¢y integrable close to I, there exists ]" in the image of \V such that, for
all' b, ], is in the same &, -orbit as J.

Proof. We can identify any | close to I with an element a € T?’l Fn,ie.witha(0,1)-
form with values in the vertical holomorphic tangent bundle compatible with wr.
So we have an embedding from an open subset in T?’l Frinto Zn:

frUT J2) > Fa.

Given b € B, we denote by p; the restriction ¢, — _#(X3). Then fy(a |x,) =
pp © f(@). We define now a new embedding f : (LI(T?'l Fr) — I as follows:

fla) = /7( L8 (),

where d g p is the fibrewise Haar measure on X' — B. Then f is such that

flk-a) b=k o fla)lp -
Now, «a is an integrable deformation if and only if it satisfies [44, Lemma 6.1.2]
N(a) = da + [a, a] = 0. (2.14)

Note that if a is integrable its restriction to each fibre is also integrable, so equation
(2.14) holds also fibrewise. For any b € B, let Hj, : TIO’1 I Ix,— H; be the
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L,zc-orthogonal projection and let G, be the Green operator of 0,, defined by the
condition
1 =GyOp + Hy, = 0, Gy, + Hy,.

Let a be an integrable deformation. A simple computation starting from (2.14)
leads to the identity

aly +Gpd;0u0; [ Iy, a p] = Hpat | -
Then we can define a map

F:BXT)' #n > T)' n
(b,a) > aly +Gpd;dpd;[a |p, & |p],

where T?’l n is endowed with the Sobolev Li-norm. The differential of F in

the second component at the origin is the identity, since Gbéza_ﬁ;[a lp, @ |p] is
quadratic in a. Hence by the implicit function theorem we can locally invert F and
the inverse varies smoothly with b. We consider the inverse restricted to an open
ball in ﬁ}v, which we define to be V;, and for x € V; we denote it by a(x). Thus
we have a family

U:={ax)|x eV} c T 72, (2.15)

and we can define
V:Vy— 7

x - f(a(x)).
We begin by proving that this map satisfies the required properties. Denoting
u™ = {a(x) | N(a(x)) = 0}
and '
us' = {a(x) | Np(a(x) |,) = 0 Vb € B},

we want to prove that U™ is an analytic subset of U. We begin by showing that
U}‘r}t is an analytic subset of U. On each fibre X}, a(x) |, is integrable if and only if
Hpla(x) |p, a(x) |p] = 0. Indeed

N (a(x) |p) = dpar(x) Iy +[@(x) |y, a(x) |y]

B (2.16)
=2Gpdydpdy [N(a(x) |p), a(x) |p] + H [a(x) [p, a(x) |p] -

The map
B XV, — Hy

(b, v) = Hp[a(x) |p, a(x) o]

is holomorphic, so U}‘I}t is an analytic subset of U. Then, denoting U™ the analytic
family given by the Kuranishi Theorem [12, Lemma 6.1] applied to X, we see that
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U™ is the intersection of U and ll(i‘r,‘t, so it is itself an analytic family. More-
over, when restricted to the fibre X3, both maps f and F are Kj-equivariant and
holomorphic, so (2) is also proved.
We prove (3). Let [, = W(x) € _#, and fix b € B. Given & € I'(X, V) a vertical
vector field, define
Fi:X—> X

p = exp,(&p, &np)),

where gy is the Riemannian metric on the fibre X,y with respect to J. Following
[12, Lemma 6.1], we fix v € V,; C Vg, thought of as a tangent vector at x in V;;, and
we define a map

Ry : U(LE,,(Xp,C)) = L7, (Xp, TXp)
b Ep(@p, 0 |p)

such that R,(0) = 0 and
1 doRs(ps) = grad“* (Re(@p)) + Jo |x, grad™ (Im(py));
2 sz(@brmb)]x lx, € gbc Jx Ix,-

Since this map is defined via the implicit function theorem, the vector field
Ep(@p, v |p) varies smoothly with b, thus defining a global vertical vector field on X
(more details about this technique of using the implicit function theorem to prove
smooth dependence on b are given in the proof of Proposition 2.23 below). So we
can define a global map

R: UL, ,(X,C) > L7 (X, V)
o &(p,v) st &) Ix,=E(@ b, v )

The complex structure F} (0.0) Jx on X satisfies the following properties:
1. it is compatible with w. Indeed
w(FE((p,U)]x'/ ) + a)('/ Fz((p,v)]x') =
a)F(FE((p,U)]x'/ ) + CUF('/ FE(([J,Z))]X‘) + wX,?—((]x'r ) + C‘)X,‘H('r ]x)

The first two terms sum to zero because the complex structure FE(({) o) 18

fibrewise compatible with the fibrewise Kédhler form. The last two terms sum
to zero since [, € Zx;

2. it preserves T, since the differential commutes with pull-back;

3. it satisfies property 2 above for every b € B.
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Let now a(¢, v) be the (0, 1)-form with values in the holomorphic vertical tangent
space which is the pre-image of PE(@ oJx via W Then from (2.16) it follows that

a(p, v) fibrewise satisfies an elliptic equation of the form
Oy T(p,0,N(a)) = 20, 0vd, [T(p,o,N(a)), S(p,0, )], (217)

where T(0,v, N) = N and S(0, v, @) = a.

Let now | € #M be close to I in Li. The proof now goes exactly as in [12,
Lemma 6.1], and we report it here for completeness. Since | is integrable, the
corresponding vector-valued (0, 1);-form «; satisfies (2.17) for all (¢, v). Consider
the L?-projections

M 12 (TP ) > Im(Py), o L2 (10 ) — ),

and consider the map x : (LI(Li (X, C)) X Vy — Im(Py) X ﬁ}v defined by

(¢, 0) = (Hl (F.E(w,v)]”) b (Fg@,v)h)) '

Remark thatif a, § € T?’l P satisfy (2.17) and they are such that (ITya, ITa) =
(ITy1 B, I B), then by ellipticity it follows that & = . The differential of the map y is
do,0x(@,v) = (Py(p),v): it is surjective and the kernel corresponds to fibrewise
holomorphy potentials, so it is finite dimensional fibrewise. Thus again by the
implicit function theorem, there exist (¢, v) such that (ITy(ay), [Tx(ay)) = x(¢,v),
hence by the ellipticity argument aj = F, (0.9) Jx- m]

Remark 2.22 (Versal deformations). The proof of the relative Kuranishi Theorem
guarantees the existence of versal deformations. Recall from Definition 1.24 that
deformation X — B x V with central fibre (X, I) is called versal if any other family
X’ — B x V] (centred at I) is obtained by pullback via a map f : V), — V,, which
might not be unique but whose differential is uniquely determined. This is proven
in the third step of Theorem 2.21, where a single complex structure ] is considered
instead of a second family {J; }. The pullback is given by the exponential map F&¢,
where & = &(@, v) is uniquely determined by the vector v tangent to the complex
structure J.

Proposition 2.23. Possibly after shrinking V., we can perturb the map W to
O:Vy— In (2.18)

such that _
Scaly (w, D(x)) — Sy € C¥(E).

Remark that the claim holds fibrewise as a consequence of Theorem 1.23, so
we just need to check that the complex structure we find on each fibre X; varies
smoothly with b. This relies on the fact that the proof involves the implicit function
theorem.
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Proof of Proposition 2.23. For every b € B, the Lie algebra of K; is f, = ker DZZ);,,
which is exactly the fibre E;, of the vector bundle E defined in §2.1. Let U; be a
small ball around the origin of L?!(R). Define a map

G:BxVyxU — L¥™*R)
(b, x, ) = Tp2ar)Scal (wp, Fp, (P(x) [))

where W(x) |, defines an element in _#;; from Theorem 1.23, and the map F is
the one defined in (1.14). The derivative along the third component of G at 0 of a
function ¢ is given by P}, Py(¢), which is an isomorphism L*!(R) — L*'~*(R). By
the implicit function theorem, for every b, W can be perturbed to @, : V}, —» #(Xp)
in such a way that Scal(wp, ®p(x)) € 5, and ®;, varies smoothly with b. Thus we
find a map

O:Vy > Fr

such that Scaly (w, ®(x)) — §b € C*(E). O

Let us return now to considering a holomorphic submersion nx : X — B with
a relatively cscK metric (w, ). By viewing w as fixed and varying the complex
structure, we consider a family {J;} such that (v, J;) are relatively Kdhler metrics
on X — B. Theorem 2.21, together with Proposition 2.23, allow us to extend
definition of the sections y; (2.7) and v (2.8) of C*°(E) to the following maps.

Definition 2.24. Let 1, be the map
Un - Vi — COO(E/I)
x  Scaly(w, D(x)) — Sp

and let v, be the map
vy H — C®(E)
v - v (0),

where v (v) |p= vy(v |x,) and v} is the map defined in Definition 1.26.

Remark 2.25. 1If x; € V; corresponds to J; via the relative Kuranishi map (2.18), we
have that p1,(xs) = ys, where us € C*(E) is the section defined in (2.7). Similarly,
ifve ﬁ}v is the deformation of the family {J;}, then v,(v) is the section v € C*(E)
defined in (2.8). By applying Proposition 2.23 we can perturb u, to end up in
C*®(E), so we do not see the projection as in (2.7).

From the definition (2.7), the perturbation given by Proposition 2.23 and the

expansion (2.9) of u; € C®(E) it follows that, if v € FI}V is the deformation of the

family {J;}, )
Scaly (@, Js) — Sp = pr(xs) = %vn(v) +0(s%). (2.19)

This expansion will be used in §3.1, where we derive the optimal symplectic con-
nection equation from an expansion of the scalar curvature.
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Chapter 3

Extremal metrics on the total space

As before, let @ : (X,H) — (B,L) X S be a degeneration of a fibration 7y :
(Y, Hy) — B with central fibration 7ty : (X, Hx) — B, endowed with a C*-action on
B x S which lifts to (X, H). Let w be a relatively cscK metric on X. As in §2.2.2,
we can assume that w is relatively Kdhler also on Y. It follows that the general
fibrations Xs — B X {s} are all biholomorphic to Y — B. For k > 0, consider the
Kéhler form

wr = w + kwg,

where wp is a fixed Kéhler metric on B. In this chapter, we obtain the optimal
symplectic connection from the expansion of the scalar curvature in powers of k.
We then compute the linearisation of the optimal symplectic operator and we use
optimal symplectic connections to construct constant scalar curvature and extremal
Kahler metrics in the class ¢1(Hy) + kc1(L).

3.1 Expansion of the scalar curvature

In this subsection, we derive an expansion of the scalar curvature Scal(wg, J;), in
powers of s and inverse powers of k, from which we deduce the optimal symplectic
connection equation (2.10). Recall from [14, §4.1] that

Scal(wg, Js) = Scaly(w, J5) + k™ (Scal(wg) + Aqy(Awy 0g) + Awyp) + O (K72) .
Clearly, the k™! term - denoted T-1 - depends on s, so we can write
Ti-1(wp, w, Js) = Ti-1(wp, w, I) + O(s).

Proposition 3.1. By choosing s> = Ak~ for A > 0 and using the expansion (2.19) for the
vertical scalar curvature we obtain

-~ A
Scal(@x, Jo) = Sp+ k7 {5 + Pe(A(Mup @) + Augpr) + 5V(0) + w) +0 (k02)

where:
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1. p is a function on the base given by

17[13 = Scal(a)B) + / (Aa)g PW) w™.
X/B

2. Yr € C¥(R, ).

Proof. For the first item, in [14, §4.1] based on [26, Lemma 2.3] it is shown that
/ (A(UB p(]‘()a)m = _A(UB aOWP,
X/B

where awp is the Weil-Petersson metric defined in (1.27). Moreover, the k~!-term
depends only on I because the O(s)-part ends up in O (k=3/2). Its expression is
obtained following [14, §4.2]. O

Thus the optimal symplectic connection equation implies that the C*°(E)-part
of the k™!-term of the expansion of the scalar curvature vanishes. Note that Spisa
topological constant independent of b, since all the fibres are diffeomorphic.
Remark 3.2. For simplicity, we have assumed that all the manifolds involved are
projective varieties. This is not a strictly necessary assumption, as everything could
be carried out in the Kédhler case: instead of a relative polarisation on Xs, we fix
a relative Kahler class as; and on the base a Kdhler class . Then the constant S, by
scalar curvature of the fibres of X = Xj, is still independent of b. Indeed locally on
a chart U C B, X is diffeomorphic to F X U, where (F, ar) is a model fibre. Then
«a is isomorphic to the class pjar, where p; is the projection onto the first factor

FxU — F,so
/ a :/al’?‘l-cl(Xb).
X, F

~ a(Xp)-al!
pE
b

Therefore the constant

1

is independent of b.

3.2 Linearisation of the fibrewise map v

We restrict our attention to a single fibre, so we consider a manifold (M, w), where
I is a cscK complex structure and v € H!'is a deformation of I. We wish to linearise
the map v defined in 1.26.

Let ¢ € kerR(DSZDO). Then %Vg @k is a real holomorphic vector field, where
g is the Riemannian metric induced by w and I. Let p(f) be the flow of the vector
field

Epp = V8¢@E = —Igrad” ¢k.
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3.2 Linearisation of the fibrewise map v

We wish to study how v(v) changes when changing @ to p(t)'@, so we must
compute

It lt=0 ve(vt) = It |r=0 v¢(v) + dov (It |t=0 V¢) . (3.1)

In this expression, v; is the moment map for the action of K€ defined in 1.26
computed with respect to the Kahler form p(t)*w, and v; = p(t)*v. Remark that
p(t) is a 1-parameter group of diffeomorphisms in K* because it is the flow of a
holomorphic vector field that admits a holomorphy potential.

Asin§l.4,let®:V — ¢ be the Kuranishi map (2.18) which maps 0 to I, and
H! the deformation space, which we identify with the tangent space ToV. The map
@ is K-equivariant, hence locally Kc—equivariant. In particular

O (p(t)'x) = p(t)'P(x)  forx € V.

Hence the pair (w, p(t)*x) corresponds via @ to a compatible pair (w, p(t)*®(x))
and this also holds for our v € H!, which is itself an element of V. We have that

9 o p(1)'0 = (Le, )| (32)

where v is a vector field on V; such that v [j= v. By abuse of notation, we will
often denote this derivative by L, v.

Lemma 3.3. For v € H', v;(v) = v(v;).

Proof. Again, this follows from equivariance. Consider again the moment map
p(x) = S(w, P(x)) and denote by p; the map

pe V-t
x = S(w, p(t) d(x)).

Because ® and p; are (locally) KC-invariant, and in light of the above computation,
we obtain

S(w, p(t)'®(x)) = S(w, D(p(t)'x)) = u(p(t)'x) = p(t) u(x).
Now letv € TV = H!. Then

52

(s0) = p( utso) = ploy | Sv(0) + 0057

But also )
s
pi(sv) = Evt(v) +0(s%).

Thus v¢(v) = p(t)"v(v) = v(p(t)'v), as claimed. O
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Using this lemma and equation (3.2), the derivative (3.1) becomes

9t o vi(21) = 2 dov (L, 0)

Thus using the definition of moment map we can compute the linearisation of the
map v as follows. Letting i €,

dv <V/ l)b>(‘£é<p5 'U) = QO (LE(pE v, LTN’,U) 4

where 1y = grad”1). Recall the linearised infinitesimal action induced by ¢ € t
defined in (1.21), and denoted A,. We showed in (1.22) that

Ayv = — (.va) lo -

Thus using the definition of (g,
do(v, ) (Le,,0) = /M (1do® ( Le,, 0) , do® (L5, 0) )0 "
= [ (do® (L, v]),do® L, ])e @™ 3.3
/MO(WE)O(M) (3-3)
- / (do® (Agr0) , do® (Ay0)) ",
M
where (-, ), is the inner product induced by the Riemannian metric g(w, I).
3.3 Linearisation of the optimal symplectic connection equa-
tion

Let us now return to the fibration setting. Letting ¢, ¢ € C*(E), by applying (3.3)
and the fact that the map v, defined in 2.24 is defined fibrewise, we obtain

(dovn(Le,0), ¥) = /X(dQ(I) (Apv) , do®@ (Ay0))awrwf A w. (3.4)

Here, the map Ay acts vertically, because it is induced by the infinitesimal action
of the group of holomorphic isometries of every fibre. By using equation (3.4), we
obtain the following result.

Lemma 3.4. Let £ be the linearisation of the equation (2.10) at a solution, composed with
the projection pg. Then

(L(e), ) = /X (R, R s s @ Al + A /X (do® (A o) , do® (Ay0))ur @ Al

where R is the operator (2.4), which gives the linearisation of the optimal symplectic
connection equation at a solution.
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3.3 Linearisation of the optimal symplectic connection equation

From this expression it follows that L is self adjoint.
We now study the kernel of L. Since v is fixed in our setting, we can define the
maps N
A:C(E)—>H) and A:CE)->T) 7«
Y= AIPU Y= do® (AIPZ)) .
Lemma 3.5. A function ¢ € C*(E) is in the kernel of A if and only if ¢ is a fibrewise
holomorphy potential with respect to all [, i.e. p € C¥(E, J5).

(3.5)

Proof. Let i € kerA and take x; € V is such that xg = 0 and %o = v. Then

0=Ay() = % do(x — exp(ty) - x)(v)
t=0
48] enin
o =0 & o)
-2 Ly

where by p¥(t) we denote the flow of the vertical vector field ny = grad“’1,
and all the equalities hold fibrewise since the Hamiltonian action we consider is a
fibrewise action. So LW Jx, is fibrewise constant, i.e.

(£0,1x),, = (£ah),, =0

for all s. This can be rephrased as

as,’VrM) =0

for all s, where J; « is the vertical d-operator computed with respect to J;. Notice
that 17y is a real vector field which corresponds (under the isomorphism between

real vector fields and (1,0)s vector fields) to ]Svg’f)vgb, where V; 4/¢ denotes the
vertical vector field which on each fibre is the Riemannian gradient with respect to
the fibrewise metric induced by (wr, Js). Since J; is integrable,

(-EIN,IS)(V = (£]>V3:9V¢]S)V = (]SLV;?VIPIS)(V = O/
so 1) is a fibrewise holomorphic potential for J;. m]
Proposition 3.6. The kernel of Lis given by
ker[ = {¢ e C¥(E, 1) | 3,(V", ) = 0 vS},

i.e. the functions in the kernel are those fibrewise I-holomorphy potentials which are global
holomorphy potentials with respect to all J;.
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Proof. Since ® is an embedding, do® is injective, so for ¢y € C*(E), ¢ € kerf if and
only if 1 € kerR and ¢ € kerA.
As seen in §2.2.1, the kernel of R consists of fibrewise holomorphy potentials

which are also global holomorphy potentials. Thus iy € C*(E) lies in ker L if and
only if
IV =0 and Js V.5, ¥ =0.
as shown in Lemma 3.5. From these two conditions, and in light of Lemma 2.13,
which implies that dp does not depend on s, we have
dsgrad“F i = ds qygrad“F i + dpgrad“F i = 0,

as claimed. O

Remark 3.7. In[17,84.1] it is explained that the kernel of the operator R is given by
the Lie algebra of the group Aut(mx) of automorphisms of the projection, described

in Definition 2.2. In our case, the kernel of the linearisation f is the intersection
ker £ = Lie(Aut(r)) N Lie(Aut(mx)),

where we denote by 7x : X — B the central fibration and we view {J;} as a family
of complex structures on the same underlying smooth manifolds, compatible with
the projection and with w.

We wish to see that L is elliptic as a differential operator on the global sections
of E — B. Let us split A in (3.5) as the composition of the two operators
A1 : C*(E) > T(V)
¢ > grad ¢
and
A2 . F((V) e T]/n
ne _(an)-

To give a local expression, we make use of Riemannian coordinates, and we de-
note again the vertical coordinates with the letters a,b,c,... and the horizontal
coordinates with the letters i, j, k, . .., as in §2.3. We have:

(A2(), = = (an)ab = —1°0:v", — v dpn° + v e’
(A2(n); = (A2()"(@p)*(@)aj

where the second expression follows from Lemma 2.12. Thus when ¢ € C*(E)
and n = a)g@g(p&d,

(A(P), = =0 (@i ap) + v, (@ dag) + Ti(9)
(A)); = =0 (@ dap)wp) (@)ej + 0, 0c(WE Daep) (@) (@)ej + Ti (),
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3.3 Linearisation of the optimal symplectic connection equation

where T1(¢@) and T](¢p) are terms involving first order vertical derivatives of ¢.
Thus we see that (A is a second order differential operator, and all the derivatives
of ¢ involved are vertical. The adjoint of A is given by

Aj(n) = div(In).

Indeed, we can compute the divergence with respect to any Kédhler metric ¢ whose
Kéhler form restricts vertically to wr, and the result depends only on the vertical
part:

(A, s = / Guc 0™ A 1 Vol = / —igueg™ (Vo) 1f dVol,
X X

= / —i(Vep) n°dVolg = / @ Ve(in®) dVolg = (@, A1n)p2.
X X
To compute the adjoint of A, we make use of the following lemma.

Lemma3.8. Let w € ﬁ}v and let gr be the vertical Riemannian metric induced by (wr, I).
Then

g (L0, w) = gr(w, Vo(n)) + gr(ow — wo, V).

The proof of the lemma is obtained by computing the different quantities in
Riemannian coordinates [68, §4.2].
In light of the lemma, the adjoint to A, can be formally written as

A(w) = =(Vo)'w - V([v, w]).

If w = A(ep), the first term is of order 3. So we have:
A A(p) = —div (IV*q,(v(LWU)(V - (L,M,v)q/v)) + lower order terms.

From this expression, we see that all the quantities involved are vertical. This means
that, as an operator on the global sections of the vector bundle E, the operator

A'A . CP(E) —» C¥(E)

is of order 0. Indeed, let us denote by r the rank of E and consider a local frame
hi,...,h, of E. Then we can write a local section h = }}; fih;, with f; € C*(B).
Then

AAR) = 1A Ah).

Thus, as an operator on the global sections C*(E), the operator Lis elliptic, since
R*R is from [14, §4] and A" A is of lower order. We have established the following:

Theorem 3.9. Let £ be the linearisation of the optimal symplectic connection equation

(2.10). Then Lisan elliptic operator of order two on the global sections of E which is
self-adjoint and whose kernel consists of fibrewise I-holomorphy potentials which are also
global Js-holomorphy potentials for all s.
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3.4 Automorphisms of the optimal symplectic connection
equation

Let (X,Hx) — B be a relatively cscK fibration. Consider the complex group
Aut(X, Hx) of automorphisms of X lifting to Hx. Its Lie algebra is given by the
holomorphic vector fields which vanish somewhere, and we denote it by by. Recall
from (2.13) the group of relative Hamiltonian isometries

K :=Isom(7ty, w) = {f € Diffeo(X) | ffwo =wand nxo f = nx}
and from Definition 2.2 the group of relative automorphisms
Aut(7ty) = {f € Aut(X,Hx) | mx o f = nx}.

We denote by b, the Lie algebra of Aut(ntx) and t; the Lie algebra of K;. An
element in b is a holomorphic vector field which vanishes somewhere and whose
flow lies in Aut(rtx), while an element of t; is a holomorphic vector field which
corresponds to a Killing vector field under the identification of the real tangent
bundle Tr X with the holomorphic tangent bundle T19X. The following fibration
version of Theorem 1.4 is a result of Dervan and Sektnan [14], [17].

Lemma 3.10. 1. Let w be an optimal symplectic connection and f € Aut(nix). Then
f*w is an optimal symplectic connection.

2. Let w be an optimal symplectic connection. Then
br =1, ® It,.

In particular, the lemma implies that K is contained in Aut(n) with equality
holding if (w, I) is an optimal symplectic connection.

We next prove an analogous result for the optimal symplectic connection equa-
tion (2.10) on a fibration with K-semistable fibres. Let (Y, Hy) — (B, L) be such a
fibration admitting a degeneration to (X, Hx) — (B, L) and let V;; be the Kuranishi
space of rix. Let (X, H) — (B, L) X S be the degeneration family. The family of
complex structures {J;} with Jo = I corresponds to a family {y,} of points in V7
such that yy is the origin of V;;. Let v be the tangent vector at the origin of V; that
represents the degeneration family, i.e.

0= as'S:Oys~
Consider the stabiliser of v for the action of K, denoted K ,. Then
Kro = {f €EKy| ffo= v},

and
Gn,v = (KS)’U (36)
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3.4 Automorphisms of the optimal symplectic connection equation

For f € G0

as|s:0ys =0= f*v = f’e (aslszoys) = Jdsls=0 (f*ys) .

Therefore
as|s:0(ys - f*ys) =0

so v = f*v. So the elements of G, are automorphisms of the complex structure I
of the relatively cscK degeneration X — B that preserve the projection tx and are
also automorphisms of the complex structures J;. Moreover, the pull-back of the
optimal symplectic connection operator via f € Gy, satisfies

1 %v(v) +pE@O(w, 1)) | = %v(v) +pe(@(f w, ).

Indeed, since v is K&-equivariant,

fv() =v(fo)=v(v),

and by Lemma 3.10,
f (pe©(w, 1)) = pe(O(f w, I)).

We have proven the following.

Lemma 3.11. Let w be an optimal symplectic connection and f € Gp,. Then f*w is an
optimal symplectic connection. Moreover, if ¢ is a fibrewise I-holomorphy potential whose

flow of the gradient lies in G, then ¢ is in the kernel of the linearisation L.

Let g5, be the Lie algebra of G ,, consisting on those holomorphic vector fields
whose flow lies in K& and which preserve v. In particular, preserving v means that
they extend to holomorphic vector fields with respect to all Js. Let f; , be the Lie
algebra of K ,, of Killing holomorphic vector fields whose flow preserves v. We
can then prove a version of Theorem 1.4 for our setting.

Theorem 3.12. Let w be an optimal symplectic connection. Then
On,o = fn,v @ Ifn,zw
In particular K 5 is a reductive subgroup of G .

Proof. From Theorem 3.9, the kernel £ of the linearisation of the optimal symplectic
connection equation consists of fibrewise I-holomorphy potentials which are also
global Js-holomorphy potentials for all s. From the discussion above, this is in
bijection with the Lie algebra g5, and f;, corresponds to the real vector fields
in gr,. Since L is a real operator, L(u + iv) = 0 if and only if L(u) = 0 and

L) =0. O
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3.5 Special Kdhler metrics on the total space: the adiabatic
limit

Let (X,H) — B x S be a family of submersions with central fibre the fibration
(X,Hx) — (B, L) as before. In this section we construct approximate constant
scalar curvature and extremal metrics on the total space of my : (Y, Hy)—(B, L),
assuming the optimal symplectic connection and the extremal symplectic connec-
tion, respectively. We first construct approximate solutions in the case of a discrete
automorphism group and in the presence of automorphisms, and then we perturb
the approximate solutions by applying the implicit function theorem. We do so by
using an adiabatic limit, such as in [24, 14].

We will later need to choose wg appropriately, to produce cscK and extremal
metrics on Y. To do so, we use the moduli theory of cscK manifolds explained in
§1.5. Let MK be the moduli space of polarised cscK manifolds. Since our central
fibration 7t : X — B has cscK fibres, it induces amap q : B — MK, The pull-back
via g of the Weil-Petersson metric, denoted awp, is a closed smooth (1, 1)-form on
B, and it has the expression (1.27):

§b / m+1 / m
awp = @ - ANw™, (3.7)
m+1 Jxp X/B P

where p is the relative Ricci form defined in Section 2.2.1 and m is the dimension
of the fibres. Recall that awp is positive semi-definite in general.

Definition 3.13 ([74, 24]). The Kahler metric wp € c1(L) is

1. twisted cscK with respect to « if there exists a constant cp such that Scal(wg) —
Awga = CB;

2. twisted extremal with respect to « if Scal(wp) — Apya € ker D, where Dp is
the Lichnerowicz operator on B.

Definition 3.14. The group of automorphisms of the moduli map is

Aut(q) = {f € Aut(B,L)lgo f = f}.

If we denote by /g the twisted extremal holomorphy potential, then the lineari-
sation of the twisted extremal operator at a solution is given by the map [35, §2],
[15,8§3.2]

1 . n s
Ly(p)=-DpDpo + E(VAwBa,V(p) +(iddgp, a). (3.8)

The kernel of this operator is given by the holomorphy potentials of those vector
fields whose flow lies in Aut(g) [15, Proposition 3.5]. We prove the following
results.
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Theorem 3.15. Assume that the group Aut(q) and the group Aut(Y, Hy) are discrete.
Let wp be twisted cscK with respect to the pull-back via q of the Weil-Petersson metric
on the moduli space of cscK manifolds. Let w be an optimal symplectic connection on
(Y,Hy) — (B,L). Then for all k > 0 there exists a constant scalar curvature Kihler
metricon Y, in the class [w] + k[wp].

When automorphisms are present, we use extremal symplectic connections
and twisted extremal metrics on the base to prove the existence of extremal metrics
on the total space. Recall from Definition 2.11 that w is an extremal symplectic
connection on Y if

z (pE(G)(a), 1) + %v) ~0,

so that the function

A
hy = pE(G)(a), I)) + EV
is a holomorphy potential for the complex structure of Y.

Theorem 3.16. Assume that there is an action of Aut(my) on (X, H) which is equivariant
with respect to the projection onto S and that all automorphisms of the moduli map q lift
to (Y, Hy). Let wp be a twisted extremal metric on B with respect to the pull-back via g
of the Weil-Petersson metric on the moduli space of cscK manifolds. Let w be an extremal
symplectic connection for on (Y, Hy) — (B, L). Then for all k > 0 there exists an extremal
Kihler metric on Y, in the class [w] + k[wg].

3.5.1 Approximate solutions in the case of discrete automorphism group

In this section we construct approximate constant scalar curvature Kdhler metrics
on the total space of 75 : (X5, Hs)—(B, L), where (X;, H;) is a deformation of a
fibration 7tx : (X, Hx) — (B, L) whose fibres are cscK. We make the assumptions
of Theorem 3.15:

1. Aut(Xs, H,) is discrete and (X, Hs) admits an optimal symplectic connection.
Thanks to Proposition 3.6, this guarantees that the operator L is invertible
and also that the global Lichnerowicz operator on X with respect to wy is
invertible.

2. The base form wp € c1(L) is twisted cscK with respect to the pull-back via
g of the Weil-Petersson metric, as in Definition 3.13, and the group Aut(q) is
discrete. As recalled in the discussion following Definition 3.14, this implies
that the linearisation at a solution of the twisted cscK equation on the base is
invertible;

Let k > 0 be such that
wr = w + kwpg
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is a Kdhler metric on X, and let s2 = Ak~ for A > 0. We relate s and k as
above, namely s> = Ak™!, so we will sometimes denote also the corresponding
complex structure by Ji. Since all the J; are isomorphic, Theorem 3.15 still gives
the existence of a cscK metric in each adiabatic class for all J;. The adiabatic limit
technique consists in constructing inductively approximated solutions, which have
constant scalar curvature up to a certain order in k~1/2, then using the implicit
function theorem to perturb an approximate solution to a genuine solution. The
following result establishes the approximate solution.

Proposition 3.17. With the assumptions listed above, for all k > 0 and for each r there
exist functions

fB2,---, fBr € CT(B) fep, -, fEr € CP(E) frR2,---, frR,r € CT(R)

and constants

—~

S2..., Sy
such that the Kihler potentials

hB _Zr:fBrj hE _Zy: fE,j hR _Zr:&
br = L kr = Za G2 br = Ligir
J= J=

=2

satisfy
r §4
- _ ; -
Scal (a)k +id0 (hf/r + Iy, + h}f/r) ,]k) =S, + Ez oat O (k( r 1)/2) .
]:

Proof. With the hypotheses of w being an optimal symplectic connection and wg
being a twisted cscK metric on the base, we have

Scal(wg) = gh +k71 (CB + 1PR,1) +0 (k_3/2) , (3.9)

where Y1 € C®(R). In order to make the k~l-term constant we add a potential
k™1 f € C®(R) to wg. Then

Scal(wi + k~'iddf) = Sp + k7 (cB +Yr1— DY Dyf) + 0O (k_3/2) ,

where the linearisation of the scalar curvature to order 0 in k coincides with (minus)
the Lichnerowicz operator with respect to the complex structure I, since the scalar
curvature is constant in order 0, and the higher order terms fall into O (k=3/2).
Since D7, Dy is a fibrewise elliptic differential operator and C*(R) is orthogonal
to its kernel, we can find a solution fr 1 of

Yr1 — DDy f = constant. (3.10)
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Summing up, we have proved step r = 2 of Proposition 3.17, with fg> = 0 = fg».
We define )
Wk = Wk + k‘liaafm
such that
Scal(wg2) = Sy + k715, + O (k—3/2) .

To proceed with the approximate solutions, we need the linearisation of the scalar
curvature at a metric (wg r, Jk)-

Lemma 3.18. The linearisation of the scalar curvature of wy , satisfies
Ly ==DiyDy +k'D1 +k2D3p + k 2Dy + O (k_S/Z) ,

where

1. D7, Dy is the vertical Lichnerowicz operator with respect to the complex structure I;

2. If f € C¥(B), Djy1/2(f) = 0 for all j;
3. If f € C*(B), D1(f) = 0 and

/ Da(f)a™ A @t = —La(f),
X/B

where L, is the linearisation of the twisted cscK equation on the base, with twisting
the Weil-Petersson form awp, at a solution, defined in (3.8).

4. If f € C*®(E), then
pe © Di(f) = —pe o L(f).
Proof of the Lemma. Let us distinguish the parameter s of the deformation of the

complex structure from the parameter k of the polarisation. Consider the case
n = 0, so that we compute the scalar curvature of the metric (wy, Js). Then

L= Lo+ 0O(s), (3.11)

where L g is the linearisation of the scalar curvature of (wy, I). In [14, Proposition
4.11] it is proven that

Lo =-D}yDy + k71D +k2D; + O (k%)

from which we see that the term of order zero is indeed the vertical I-Lichnerowicz
operator. This proves claim (1). By imposing the relation s> = Ak~'/? we see that
the O(s)-term in (3.11) admits an expansion in powers of k~1/2;
=1y =3/2ym -2y -5/2
KDY + k32Dy, +k2Dy + 0 (K52).

Claim (2) follows from the fact that the deformation of the complex structure is
vertical, thus all the terms involved in the expansion of the scalar curvature coming
from the deformation do not have a C*(B)-component.

Claims (3) and (4) follow as in [14, Proposition 4.11]. O
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The proof of Proposition 3.17 now goes by induction, using Lemma 3.18. We
explain in detail steps ¥ = 3 and r = 4. We start from the expansion

Scal(a)k,2) = §b + k_1§2 + k_3/2(¢5,3/2 + I]DR,3/2) +0 (k_z) .
We add a potential k~/2 f¢ to wy ». Thus we have
Scal (a)k,Z + k_l/ziaéf}g) = §b + k_1§2 + k_2/3 (EDE,3/2 + D1(f) + ¢R,3/2) +0 (k_z) .

Using Lemma 3.18, our hypothesis on the automorphism group of (X, Hs) and

the fact that the linearisation £ of the optimal symplectic connection equation at a
solution is elliptic, as proved in Theorem 3.9, we can find a smooth fg 3 such that

Vg 3/2 + PE © D1(fE3) = constant.
This makes the C®(E)-term constant to order k=>/>. We next add a potential
k‘3/2fR € C*(R) and we obtain
Scal (a)k; +100 (k_l/zf]gg, + k_a/zf[()) = §b + k_1§2+
+ k732 (CE,3/2 + 17[13313/2 - Z):V@(VfR) +0 (k‘z) .

Once again, using the fibrewise ellipticity of D7, D and the fact that C*(R) is
orthogonal to its kernel, we obtain a solution f 3 of the equation

4’;2 3/2 DijW/fR = constant.
Thus we have constructed a Kahler metric on X; constant up to order k~3/2:
Wk3 = Wk + 00 (k-1/2 feas+ k32 fR,B) _

As for the step r = 4, we explain how to deal with the C*(B)-term. We add a
potential fg to w3, which amounts to adding a potential k1 fB to wp. Since the
scalar curvature of the base affects the order k~!-term and not the order zero term,
the combined effect on the linearisation is of order k2. This allows us to write

Scal(a)ks + laéfB) = §b + k_1§2 + k_3/2§3+
+ k_z (’7[13’2 - DZ(fB) + IPE,z + E[}R,Z) +0 (k_5/2) .

Thanks to Lemma 3.18 and to our hypothesis on the automorphism group of the
moduli map,
Y2 — pg © Da(f) = constant
admits a solution, which we denote fp 4. This makes the C*°(B)-term constant to
order k2.
The corrections to the C*(E)-term and to the C*(R)-term now work exactly as
in the case r = 3. i
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3.5 Special Kihler metrics on the total space

Notice that the order is important: one can make the C*(E)-term constant
without affecting the C*(B)-term, but it cannot work the other way around, and
similarly for the C*(R)-term.

Remark 3.19. The very first step of the approximate solution procedure, which the
expansion (3.9), comes from the fact that in Proposition 2.23 we have modified the
Kuranishi map @ in order to meet the requirement that Scaly (w, ®(x)) is a section
of E, for x € V. If we do not deform the Kuranishi map in this way, we can
write the vertical scalar curvature as the sum of the projection onto C*(E) and
the projection onto C*(R). The C*(E)-part is the map p, defined in 2.24, while
the C*(R)-part introduces a term of order k~'/? in the expansion (3.9), which then
becomes
Scal((uk) = §b + k_l/z EDR,O + k1 (CB + EbR,l) +0 (k_2) .

We can get rid of this term by adding a potential k~1/2idd¢r o to wy, as in equation
(3.10). Indeed, the linearisation given by Lemma 3.18 of the scalar curvature

acquires an extra term \/%Dl /2, which is non-zero only on C ®(R), so it does not
affect the C*(E) and C*(B) parts in the k~!-term.

3.5.2 Approximate solutions in the presence of automorphisms

In this section, we allow the base and the total space to have automorphisms. As
beforelet 7 : (X, H) — (B, L)xS be a degeneration of the fibration 7ty : (Y, Hy) — B
to mx : (X, Hx) — B. Let w € c1(H) be a relatively cscK metric on X; since Y is
a small deformation of X, c¢1(H) = c1(Hy), so we can assume that w is relatively
Kéhler on Y, as explained in §2.2.2.

We make the hypotheses of Theorem 3.16 concerning the groups of automor-
phisms Aut(ry) and Aut(g) defined in 2.2 and 3.14:

1. There is an action of Aut(my) on (X, H) which is equivariant with respect to
the projection onto S. This means that Aut(my) acts on each X as a subgroup
of automorphisms of (X, H;). Since the action extends to the central fibration,
this assumption allows us to view Aut(my) as a subgroup of Aut(n). In

particular, recall from Remark 3.7 that kerL = Lie(Aut(7ty)) N Lie(Aut(m)).
With this assumption, we obtain

Ker £ = Lie(Aut(1ty)),
and h; is a holomorphy potential also on X.

2. All automorphisms of the moduli map g lift to (Y, Hy).

The first hypothesis is motivated by the analogous definition of test configurations
which are equivariant with respect to the automorphisms of the fibres, which are
used to test K-polystability of polarised manifolds.
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Extremal metrics on the total space

Recall from Definition 3.13 that a twisted extremal metric on B, with twisting
form the Weil-Petersson form awp (3.7), satisfies the condition

Scal(wp) — Awawp = by € kerDg,

where Dg is the Lichnerowicz operator on the base.

Remark 3.20. Let g be a lift of an automorphism of g to (Y, Hy). We claim that g lies
in Aut(X, Hx). Indeed, denoting by ] the complex structure of Y and I the complex
structure of X, we have

dgo]:]og‘

But since g is an automorphism in the base direction, it is equivalent to say that
dgoJy =Jpog,

where J4 is the horizontal part of . Now, J¢ = Ig, since the deformation of the
complex structure which we are considering is only in the vertical direction. Thus
g is a lift of an automorphism of B to X as well.

Definition 3.21. We denote the group of automorphisms of (Y, Hy) which are also
automorphisms of (X, Hx) as Aut(Y/X, Hy).

In light of this definition we have the inclusion Aut(my) € Aut(Y /X, Hy) and, if

K;t(q) is a lift of Aut(q) to (Y), then Kl?c(q) C Aut(Y/X, Hy). Thus we can recover
the following result from [14, Proposition 3.14].

Lemma 3.22. Suppose that all automorphisms of q lift to Y. Then there is a short exact
sequerce

0 — Lie(Aut(my)) — Lie(Aut(Y, Hy)) — Lie(Aut(g)) — 0.

Remark 3.23. Let us denote by &g the holomorphic vector field on Y which arises
from the extremal symplectic connection condition:

e = JsVy (PE(@)(CU/I)) + %V) ,

and ¢, the holomorphic vector field on B which arises from the twisted extremal
condition:
éq = ]BVB(Scal(a)B) - Awawp).

By our assumptions, &g is a holomorphy potential on X, and ¢, lifts to a holomor-
phic vector field on Y (and on X). Nonetheless, the holomorphy potential of ¢, on
Y is a function b7 such that _

b1 = kn'by + O(l)

Again from Remark 3.20, El is holomorphic potential for a lift of &, also on X.
As in [14], we need to assume the following invariance properties: w is invariant
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3.5 Special Kihler metrics on the total space

under the flow of g and of the pull-back of &;. In order to make this assumptions
reasonable to work with, we consider a maximal torus Tr in Aut(7ty) which contains
the flow of {g, and a maximal torus T, in Aut(B, L) which contains the flow of &,.
The pull back ﬁ] liesin Aut(Y /X, Hy). Then we fix a maximal torus T in Aut(Y, Hy)
which contains T and T;, and we require that w is invariant with respect to T.
From Lemma 3.22, we obtain a splitting Lie(T) = Lie(Tg) + Lie(T;), so indeed we
have T c Aut(Y /X, Hy) as well.

Moreover, an analogous splitting holds also for the complexification T, so we
can write every vector field & € Lie(T®) as &g +&,. If hg is the holomorphy potential
of &g with respect to w and hp is the holomorphy potential of &; on the base with
respect to wp, then hg + k7} hp is a holomorphy potential of £ on Y (and on X).

Define the extremal symplectic connection operator
P :C*(Y,R)x C*(E) = C*(Y,R)

by
- A 1
P(p, ) = pe (Ow +i09g, J,)) + Zvp = hn = 5{Vh1, Vo)u.

The linearisation at (h1, 0) applied to (h1, ¢) is obtained, as for the extremal operator
described in (1.2), as follows:

E() = Iy = 5(Vht, Vb,

where £ is the real operator of the linearisation of the optimal symplectic connec-
tion equation described in Lemma 3.4 and the map sending ¢ to (Vhi, V@) is
linear. We can write

(Vi Vb = 3Vh() + 58]V (),

so if we assume that 1 is invariant under the torus T, the second term vanishes
and linearisation is a real operator.

With all of these assumptions in place, we can obtain approximate solutions to
the extremal equation much as in §3.5.1.

Proposition 3.24. Let (X, H) — B X S be a degeneration of a smooth fibration my :
(Y, Hy) — B to a smooth relatively cscK fibration nx : (X, Hx) — B, equivariant with
respect to Aut(ty). Let w be an extremal symplectic connection on X, invariant under
the torus T described in Remark 3.23. Let wp a twisted extremal metric on the base, and
assume that all automorphisms of q lift to Y. Then for each r > 1 there exist functions

fB,2/~'~/fB,1’ € COO(B)T/ fE,Z/"-/fE,T € COO(E)T/ fR,Z/"'/fR,r € COO(R)T/

base holomorphy potentials
bi,..., by € C°(B)T,
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fibre holomorphy potentials
hi, ..., h, € CO(E)T

and a constant c such that, letting

B = - fBJ hE = - fE,]' R = \ fRJ
kr — Zz F’ kr Zz KG-1/2’ kr — Zz m
]= 1= ]=

and
.

Mer =+ (BT 4 k2,
i=1
the Kihler metric B
Wk, = Wk + 190 (h,lf,r + h,’frr + h}f,r)

’ J ]”,}" ;]’kr c —+ E R O l_r_ 2
(a)k " k) 2< ’ (hk,7 hk,? hk 7‘)>(Uk ( / ) .

3.5.3 Solution to the non-linear equation

In order to have genuine solutions, we perturb wy , to a genuine extremal metric
by using a quantitative version of the implicit function theorem, as in [24, 7, 15, 14].
In particular, all the cited works rely on Fine’s paper [24], though the difference
with Fine’s setting is that we are considering the base and the total space to have
automorphisms, so the linearised operators will have a non-trivial kernel to deal
with.

Theorem 3.25 ([7, Theorem 25]). Let F : By — B, be a differentiable map of Banach
spaces such that DyF is surjective with right-inverse P. Let

1. 0" > 0 be such that the non-linear operator (F — DyF) is Lipschitz in By (0) with

1 .
constant S Le- for x1, x2 € Bs(0) € By, we have

1
I(F = DoF) (x1) = (F = DoF)(x2)||p, < mllxl - X2llp,;

_ ¢
2. 6—m.

Then for all y € By such that ||y — F(0)|| < 0, there exists x € By such that F(x) = y.

To apply the theorem to the extremal operator, one should bound both the right
inverse of the linearisation and the non-linear operator. Denote by L%,p the Sobolev
spaces of functions on Y computed with respect to wy ,, and remark that these do
not depend on k, since the Sobolev norms are equivalent for different values of k
[7, Remark 30].
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3.5 Special Kihler metrics on the total space

Let t be the Lie algebra of T, where T is the torus of automorphisms described
in Remark 3.23. Let t be the set of holomorphy potentials whose flow lies in T. We
denote by (L%IP)T the space of T-invariant functions in L%/ .

For each k, r denote by yy , the Kdhler potential defined in Proposition 3.24,
such that the approximately extremal metric wy, is given by wy +iddyy. .. For each
k, r we define the map

Ter it — CP(X,R)
* 1 *
& knyhg +hy + E(Vyk,r,V(knyhB + 1)
where hp and h, are the holomorphy potentials defined in Remark 3.23. The
map T, associates to a T-invariant holomorphic vector field the correspondent

holomorphy potential with respect to wy ;.
We apply the theorem to the operators

Fior i (L ,0q)" Xt = (L] )T
S 1 1
Fk,r((Pr h) = Scal(wk,r + la&@) - §<Vnk,1‘/ V)/k,r> — Nk,r — E<V(Tk,r(h))/ V§0> - Tk,r(h)/

where 1y, is the Kdhler potential which makes wy , approximately extremal. The
linearisation of Fy , is the operator

G, : (Lg,M)T xt— (L2)T
. 1
(@, 1) = =Dy, Dier(p) + 5 (VSeallw,r) = Tk, (1)), V) = i (h).

The proof requires two steps: the first one is to ensure that the linearisation is
surjective with bounded inverse Py ,. Theorem 3.25 then gives 0y such that if
|Fx»(0)]| < 6k, a zero of Fy , exists. Since we want to find a zero for all k, the second
step is to find a value of r for which the norm ||F ,(0)|| converges to zero quicker
than 6. The first step is contained in the following lemma [15, Lemma 6.6], based
on [24, Lemmas 6.5,6.6,6.7].

Lemma 3.26. There exists a constant C independent of k such that Gy, has a right inverse
Py, such that
||Pk,r|| < Ck°/2,

The second step relies on the following result [15, Lemma 6.6], which is a
consequence of the mean value theorem.

Lemma 3.27. Let Ny, = Fi , —doFx , be the nonlinear part of the extremal operator. Then
there are constant c, C such that for all r sufficiently large, if f; € (L?)H)T Xtfori=1,2
satisfy || fil| < c, then

V() = Ner (£l < € (N2 o+ 12002 ) I3 = Follz o
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Extremal metrics on the total space

By applying the implicit function Theorem 3.25, we can now complete the proof
of Theorem 3.16 as follows. Lemma 3.27 implies that Ny , is Lipschitz on any ball
of radius p sufficiently small, with Lipschitz constant pC. Thus the radius ¢’
on which N, is Lipschitz with constant (2||P||x,)~" is bounded below by some
multiple of k=5/2. Hence 6 = &’(2||P||)~! is bounded below by a multiple of k=°. In
order to apply the implicit function theorem, it remains to bound Fy ,(0,0). The
point-wise bound Fi, = O(k{"""1/2) is provided by Proposition 3.24. Results of
Fine [24, Lemma 5.6, 5.7] can be applied directly to our situation in order to have
a L,%(a)k,r)-bound on Fy ,(0) of order k52, when r > 5. Thus the hypotheses of the
implicit function theorem are satisfied and || Fx ,(0)|| converges to zero quicker than
Ok. Therefore Fy , admits a zero for all k sufficiently large, which gives the required
extremal metric on Y.
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Chapter 4

The moduli space of holomorphic
submersions

We construct the moduli space of fibrations admitting optimal symplectic con-
nections, with discrete relative automorphism group. Our main reference in the
construction is Fujiki-Schumacher [31], where the moduli space of cscK manifolds
in the case of discrete automorphism group is defined. Let Y — B be a fibration
that degenerates to a relatively cscK holomorphic submersion X — B, as described
in §2.3.1. We first prove that the set of deformations of Y — B that still degenerate
to a relatively cscK fibration (possibly different from X — B) forms a locally closed
analytic subset of the relative Kuranishi space. We then prove that the solutions
to the optimal symplectic connection equation (2.10) form an open set inside the
locally closed subset of admissible deformations. This allows us to define a local
moduli space of optimal symplectic connections. Finally, we glue the local mod-
uli spaces and we prove that we obtain a global Hausdorff complex space which
parametrises optimal symplectic connections.

4.1 Openness of the setting

Given a fibration mty : (Y, Hy) — (B, L) with analytically K-semistable fibres, we
assume as in §2.2.2 that there exists a degeneration of my to a fibration mx :
(X, Hx) — (B, L) such that the fibres of tx are cscK. In particular, we can consider
Y — B and X — B as the same symplectic fibration 7 : (M, w) — B, and the
degeneration as a deformation of a complex structure | to I, where (w,I) has
fibrewise constant scalar curvature. The goal of this section is to understand for
which deformations |’ of | we can still find a relatively cscK degeneration X’, and
to construct such a degeneration.

We begin by working locally in B. Let U C B be a coordinate open subset of B.
The fibre over the origin of U, denoted M)y, has a constant scalar curvature metric
(wo, Ip). Let K be the group of Hamiltonian isometries of (wo, Ip) and let ﬁé be
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the vector space (1.15) parametrising first-order deformations of (M, wo, Ip). Since
(wo, Ip) has constant scalar curvature, the complexification of K is the group

G= Ath(Mo, Ho).

We will employ Definition 1.9 of GIT-stability for the action of a reductive group
on an affine space, applying the definition of stability to the vector space ﬁé The
complex structure Iy corresponds to the origin in the Kuranishi space Vj, which is
fixed by the action of G. Therefore its orbit is closed and its stabiliser is the group
G itself, so it is a polystable point. A key result for our construction is the fact

that the closure of the orbit of every point in ﬁé contains a unique polystable orbit
(Lemma 1.8).

Let Vj be the subspace of the Kuranishi space which parametrises integrable
almost complex structures; it is a locally closed analytic subspace of ﬁé because
it is defined by the vanishing of the Nijenhuis tensor. Thus the family X — B
can be described locally over U as a family {x;} in Vj. By our hypothesis 2, the
automorphism group of (M, Hp) is isomorphic to G for all b € B. Therefore the
points {x; | b € U} are all fixed by the action of G and are hence polystable.

The family Y — B can be described locally over U as a family {y; | b € U} of
points such that for each b the closure of the G-orbit of y; contains the polystable
point x;, [12, Theorem 1.3]. By Lemma 1.8, x; is the only polystable orbit in the
closure of the orbit of y;. Let V" be the set of all semistable points that have a fixed
point in the closure of their orbit. Then the map

F:Vy -V 4.1)
that maps a semistable point to the corresponding fixed point is well-defined.
Lemma 4.1. The set Vj is an analytic subvariety of Vo and the map (4.1) is holomorphic.

Proof. The space V) is an open subset of the vector space H!. Letd be the dimension
of H!, so each point z € Vp has coordinates

(z1,...,24).-

Let us begin with the case when G is isomorphic to C*. The fixed points of the
action can be described by the vanishing of some coordinates

Zjp = = Zg, =0 where i1,...,ih S {1,...,d},
thus they form an analytic subspace of Vj. The action of C* can be written as
t- (er ceey Zd) = (tulzll sy tadzd)/

where the numbers a; are the weights of the action. Then Vj splits into a sum of
weight spaces Vg “ @ Vgix &) Vél 6 where C* acts on V(l)O ° with positive weights, on
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Vél “¢ with negative weights and fixes the subspace V{x. By the Hilbert-Mumford
criterion 1.11, a semistable point that has a fixed point in the closure of its orbit is
described by the following condition: if a coordinate in V(l)o ® is nonzero, then all
coordinates in V; “8 vanish, and viceversa. This condition yields a set of polynomial
equations that define the semistable points in V for the action of C*. Thus, the
semistable points correspond to an analytic subset of V. The map F is the projection
onto the set described by {z;, = ... = z;, = 0}, thus it is holomorphic.

Let now G be any reductive group, and let y be a semistable point and x be
a polystable and fixed point in the closure of its orbit. The fixed points of G
form a vector subspace V{1 also in this case. Moreover there exists a 1-parameter
subgroup A, : C* < G such that

}i_r)ré Ax(t) -y = x.

It follows that the map that sends y to the fixed point x in the closure of its orbit is the
projection onto the vector subspace of fixed points for A, hence it is holomorphic.
Consider the composite map

Prfix
Vo — Vo =V, 4.2)

where the first map is the projection onto the vector subspace of fixed points
for A, and the second map is the projection onto the subspace of fixed points
for the whole group G. The map is holomorphic because it is a composition
of holomorphic projections. We prove that it coincides with the map (4.1). Let
X" =lims—0 Ax(t) - y’. Then

G-xCcG-y.

The unique polystable orbit contained in G - ¥’ is also a polystable orbit in G -y,
so it must coincide with the fixed-point orbit {x’}. Thus flowing along the orbit of
X" amounts to projecting onto the subspace of fixed points, and so the map (4.2)
maps any point y’ to the fixed point x” in the closure of its orbit. m]

Remark 4.2. The map (4.1) is analogous to the one given by the Byatinicki-Birula
decomposition [4, 46].

Let V;; be the Kuranishi space of the fibration X — B defined in Theorem 2.21.
Consider the subspace

Vi={yeVnlylx, €V}

We remark that V;} depends on the complex structure of the reference fibration
X — B and its deformation Y — B. We denote by ¢ the image of V! via the
relative Kuranishi map (2.18).

Lemma 4.3. V! is a locally closed subvariety of V.
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Proof. Let U; and U, be two open coordinate subsets of B with non-empty inter-
section and let 01 be the origin of U; and 0, be the origin of U,. Denote by I;
and I, the complex structures of the fibres X, and Xo,, and Gy, G2 their groups
of automorphisms. By assumption, G; and G; are isomorphic, and we will denote
them by G. Recall that the Kuranishi space is versal and more specifically that it
is a complete deformation space for the nearby fibres. We use the versality of the
Kuranishi map to glue the spaces V" and V, constructed in Lemma 4.1 to a variety
V™ and prove that V! is obtained as the intersection of said variety with the relative
Kuranishi space V. More precisely, versality of the Kuranishi space means that
there is a map

T21 - Vz — Vl,

not necessarily unique.

The map 71 can be taken to be G-equivariant. In fact, the G-equivariance can
be traced back to the proof of Kuranishi’s Theorem 1.23. The map 771 is defined
using the implicit function theorem, which can be applied to a K-equivariant map
to provide an implicit inverse function which is K-equivariant. Since G is the
complexification of K, we obtain that 751 is G-equivariant. The equivariance also
implies that the image of V2+ is V1+, SO we can restrict 757 to

?21 . V2+ — V1+.

Moreover the map 71 has an inverse that is constructed reversing the roles of V;
and V, so it is an isomorphism. In fact, although the map 7; is not canonical,
the restriction to Ty is fixed by the reference K-semistable fibration Y — B. Each

Kuranishi space V}, is a complex subspace of the vector space H}, described as the
kernel of the elliptic operator P, P} + (92 dp)? (1.15). So we can use the isomorphism
721 to glue the spaces V' to a subvariety V* of the kernel of the fibrewise elliptic
operator
P(VP:V + (a_:va_rv)z
Therefore the intersection
Vi=vinVy,

is a locally closed subvariety of V. m]

The following lemma shows that we can glue the local fibration constructed in
Lemma 4.1 to a global fibration over B.

Lemma4.4. Let Y = (M, w, ]’) — B bea fibration with complex structure ]’ represented
by y’' € V. Then Y’ degenerates to X’ = (M, w,1") — B such that

1. (w,I) is relatively cscK;

2. the groups Aut(X;, H,) are isomorphic for all b € B.
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Proof. Let U C B be an open coordinate subset. By the relative Kuranishi Theorem
1.23, for each b € U there exists a point y; € Vo such that ®y(y,) is in the same
G*-orbit of J. The fact that the map (4.1) is holomorphic implies that we can
find polystable points {x}} such that {®y(x})} are a holomorphic family of cscK
complex structures over U that are deformations of {J; }. Then we can construct a
local relatively cscK fibration from the pullback diagram

Xy, — Mu

l lpw (4.3)

U—=W

where pq : My — Vj is Kuranishi’s versal family and i(b) = x;.

Now we glue the local fibrations to a fibration X" — B. Let U; and U, and G
be as in Lemma 4.3. The associated Kuranishi maps are denoted respectively by
CI)1:V1—>/andCD2:V2—>/.

For b € Uy N U, consider the complex structure ]I;. Since | é can be regarded as
a deformation of both I; and I, there exist points yl,i,l e V7 and yé,z € V5 such that

Oi(y; 1) = Jj = Paly ).

The diagram (4.3) produces two fibrations X] — U and X; — U,. In order to
glue the local fibrations we need to prove that there is an isomorphism

(PIZ : Xil(u]ﬂﬂz - Xél(u]ﬂﬂz
and that it satisfies the cocycle condition

P23 © P12 = P13

on a triple intersection Uy N U N Uz of open subsets of B. In particular, the
first condition produces a global compact complex manifold X’, while the cocycle
condition implies that X’ admits a submersion onto B.

To prove the existence of the isomorphism ¢, we use again the fact that the
Kuranishi space induces complete deformations on the nearby fibres. The map

’C212V2—>V1

is such that M, = 75, M. In particular, we have the following diagram

Mz Ml

i i
V> > V1

Xé — U NU +— Xi
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If we show that the diagram is commutative, i.e. 721 o i = i1, then
Xolannw, = ix My = (121 0 i)' My = ii My = X{lannas-

The commutativity follows from the fact that the map 751 is G-equivariant. Indeed
the points i1(b) and i»(b) are defined as the fixed-point limits of semistable orbits.
Moreover, an equivariant map between two spaces on which there is an action of
the same group G sends fixed points to fixed points and the closure of the orbit of
i1(D) to the closure of the orbit of i>(b).

We now show the cocycle condition. Let U be a triple intersection U1 N U NU;3
and consider the following diagram

31

Vl STh VZ ST

\/

On V3 we have two families pulled-back from V7, namely T§1M1 and (121 0732)* M;.
They induce two distinct families on U, pulled-back using i3. Although in general
it is not true that 73 is equal to the composition 731 o 73;, the commutativity of the
arrows proved above implies that

Tp1 © T3p © i3 = T31 © I3.

Therefore the two families 73, M; and (121 © T32)* M1 coincide. O

4.2 Openness of the space of optimal symplectic connec-
tions

Let Y — B be a fibration with K-semistable fibres, and assume that it degenerates
to a fibration X — B with cscK fibres, in the sense of §2.2.2. Let Y’ — B be a
deformation of Y — B in #f. Then Y’ — B admits a degeneration to X" — B,
whose fibres are cscK, as explained in §4.1. The goal of this section is to show that
if Y admits an optimal symplectic connection then Y” also does.

We denote by I the complex structure of X, by | the complex structure of Y and
we assume that Y — B is generated by vy € V. We also assume that (w, J) is an
optimal symplectic connection. Let V} be the subvariety of V;; which describes the
family of complex structures _#7. The following is a relative version of Proposition
1.22.

Proposition 4.5. For every ¢ € Kg(I) there exists f € Diffo(M) such that f*w, = w
and (M, wy, I) — B is isomorphic to (M, w, f*I) — B.
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Proof. Let us consider a potential ¢ € Kg(I) and a path {¢;} in Ke(I) from 0 to ¢.
A result of Hallam [34, Theorem 3.3] guarantees that this path exists and that it is
smooth. We define the relatively cscK metrics

Wy = w + 2189@

and the Kihler metrics
wi,t = wt + kwp,

where the 9, d operators are taken with respect to the relatively cscK complex
structure I. From Proposition 2.5, we have that ¢; € C*(E(w;, I)) ® C*(B), for all
t. Thus the fibrewise Hamiltonian vector fields

ne == grad” ¢;
are well-defined. Consider the vertical vector fields
& = (V81 @)y = (Igrad™ @)

Then fibrewise d
awt = _lewt = Lz wy. 4.4)

Let {f;,t € [0,1]} be the isotopy of the time-dependent vector field &;, i.e. the
collection of diffeomorphisms of M such that

d .
aft =&(f1),  fo=id.

Since & is vertical, f; € Diffeo(M, 7). As in the proof of Proposition 1.22, we apply
the following property (1.13):

d . . dn;
aft = fi (LSJ]HFE)/

where &; and f; are a time-dependent vector field and its isotopy respectively.
Applying it to w; gives the fibrewise relation

d .,
afta)tzo,

which implies
fiowr = fiw = w.

Define J; = f;I. Then, for t = 1, the two metrics g(w, f;1) and g(w + 21'89(;), I) are
fibrewise isometric, i.e.

(M, w, f;T) = (M, w +2idd,I)

as relative Kihler manifold with fibrewise constant scalar curvature. O
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Thus, given an integrable relatively cscK complex structure I in _#;;, we have a
map
Fr:Ke(Il) — Zn
@ +— fiI=:Fr(p,I)
which locally parametrises all integrable complex structures in the same diffeomor-

phism class of I that are fibrewise cscK with respect to the fixed w. Its differential
at the origin is

(4.5)

d

dOFT[((P) = a

d

]t=a

t=0

4 1 0
fil= 4| Lal = Lugraaog)y I = —59(grad" @)y,

t=0

where, again by Proposition 2.5, ¢ € C*(E(w, I)) ® C*(B).

Now let vg € V; be the deformation of the complex structure which generates
the family Y — B and let @ be the relative Kuranishi map (2.18). Then we can
define the map

Fl : Ke(I) - H,
¢ = fivo = Fr.(@,1,vp).
Its differential at the origin computed at ¢ € C*(E(w,I)) ® C*(B) is

' d .
doF/(¢) = I frv0 = L1grad® $)q, V0- (4.6)
£=0

Definition 4.6. We denote with P the set of triples (¢, x,v) € C*(M) X TV, such
that ¢ € Ke(P(x)) and x is Kg—polystable. The optimal symplectic connection
operator is the map

G:P — C2(X)
(p,%,0) = Prg) (B0, Falp, D)) + vc (Falep, B(x),0)

In this expression E(¢, x) is the vector bundle of fibre holomorphy potentials with
respect to the Kéhler structure (w, Fr(¢, ®(x))) and v, x is the map (2.8) computed
with respect to the complex structure F (¢, P(x)).

We now compute the differential of G along the ¢-variable computed at (0, 0, vp).
To do so, we need the following technical result on the contraction with wy.

Lemma 4.7. Let o be a covariant 2-tensor of type (1,1). Then

1

Ao = Aya + T

Awza+ 0 (k72),

where A, denotes the contraction with the Kéihler metric wy, A« denotes the contraction
in the vertical direction and A, denotes the contraction with respect to the base metric.
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Proof. At each point x € X}, C X, the matrix [wy] is block-diagonal:

([wF] 0 )
0 [wrul)”

In local coordinates around the point x

()T ap; = (0F)Pa,; + (wi ) 5.

The horizontal part of wy, denoted wy ¢/ splits as wgs + kwp, where wgy is the
horizontal part of w. Let [wy 4], [ws] and [wp] be the matrices of coefficients of
the two-forms wy 41, wgr and wp respectively. We can write

-1
me]=kcgﬂ%§l—+ﬂﬁwd,

where 1 is the identity matrix and the base form wp induces a Riemannian metric
on the horizontal tangent bundle, so its inverse is well defined. The inverse of the
matrix [wy ¢7] can be expanded in inverse powers of k as

hmwT1=Vﬂwﬂ‘([ +1)
=k wp] ™! ; ( [wW]Ech] )l
= lws]™ +0 (k)

This implies the claim. O

We then write
G(p,x,v) =Gile,x) + Gao, x,0),
where
G1(9, x) = PE(p,x) (O(@, Fr(p, D(x))))
and
Ga(p, x,v) = v(p « (Fr(p, @(x),0)),

and we split the computation into two separate lemmas.

Lemma 4.8. Let ¢ € C*(E(w, I)) ® C*(B). The differential along the first variable of G
is

1 *
D1G1l(0,0,00)(®) = _ER R(p).
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Proof. Let {];} be a family of relatively cscK complex structures compatible with
w, such that ]y = I and consider the scalar curvature of (wy, J;),

Scal(wg, Jt) = Scal(wg, I) + t % Scal(wg, Ji) + O(#?). 4.7)
t=0
Let & = d;—J;, and define
Ox(a) := d Scal(wy, Jt)
k o dS =0 krJt).

From Lemma 1.18 we obtain
Qk(a) =Im ((gk)lf"7 VpVﬂa“q) =Re ((a)k)pé Vqua”q) .

We need to compute the sub-leading order term of Qj along the differential of the
map Fr (4.5)

Let us consider a = 0 (grad“’gog)ll’/o, where @f € CE"(X) is a fibrewise holomor-
phy potential. Then

Qk(@) = k™'Re (R*R(¢E)) + O (k7?), (4.8)

where R(¢r) = dp grad.,,@r and the adjoint is computed with respect to wr + wp.
As explained in §2.2.1, the operator R*R can actually be seen as pg o £ restricted
to C*(E(w, I)). Its kernel consists of fibrewise holomorphy potentials which are
global holomorphy potentials on X with respect to wy.

A local coordinate expression for « is

a = 9 (Y(pE)}‘;O = 8zj (a)}l_ﬁ%—,b(pE) aw” ® dZ] = V]' (O)?:EVE(PE) 8w“ ® dZ]r

where we have used that the component of @ with the covariant index of ver-
tical type vanishes, since the potential ¢r is a fibrewise holomorphy potential.
Therefore, using Lemma 4.7,

Ou(a) = k'Re (wg ViV,V; (a)ff’vg(p,;)) +0(k2) =
=k Re (a);j_ a)f_j’ ViVaV]TVB(pE) +0 (k_z) =
=k 'Re (R*R(¢pE)) + O (k7?).

A similar computation also holds if we consider, instead of a potential in
C*®(E(w,I)), amap ¢ € C*(E(w,I)) ® C*(B), so that a = é(Y@)}"/.O. This choice
amounts to considering an element in the image of the differential of the map F
(4.5). In this case

Qk(a) = Re(Lop) + %Re(ﬁﬂp) +0 (k'z) ,

70



4.2 Openness of the space of optimal symplectic connections

where Ly(¢) = Lo(pp) = 0, since @p is constant when restricted to a fibre, so we
obtain the same equation as (4.8). To obtain the correct coefficient in the claimed
expression note that

1
dOFn((P) = _Ea- O

Lemma 4.9. Let ¢ € C*(E(w, 1)) ® C®(B). The differential along the first variable of G»
is

D1G2l(0,0,00)(¢) = —A " A(@).

Proof. We compute

d .
ar - Vi (ft vo)

where v; is the map v computed with respect to the complex structure f;®(0). Now,
fi is the isotopy of the vector field &; = (Igrad®! @)+, where ¢; is in C*(E;)®C>(B)
and ¢ = @. In the expression of &; we are fixing the complex structure I and
varying the Kéhler form w;. In particular, &; is a fibrewise holomorphic vector
tield with respect to I. This implies that f;I = I, so v = v. Therefore

d

dt

. d .
vi (fivo) = dyyv (_dt fi UO)-
=0

t=0 t

Using the expression (4.6) we obtain

d

dyov ( a

The right-hand side can be written as —A*A(¢p) following the description (3.4).
The minus sign follows from the relation

f;UO) = dUOV ('g(lgrad‘”(p)q/vo) .
t=0

(Igrad’ @)y = -Vyp,
where V4, is the vertical Riemannian gradient. o

We define the operator

G : P — WH(X)

(4.9)
((Pr X, U) — PE(x,qo) (®(a)/ Fn((P/ (D(x)))) + %V(p,x (F;((Pl q)(x), U)) ’

where P21 is the space defined in Definition 4.6, but the functions are considered
to be in the Sobolev space W*¢(X) instead of smooth.

Proposition 4.10. Let tx : X — B be a holomorphic submersion with a fibrewise cscK
structure (w, I) and let my : Y — B be a deformation of X — B with complex structure |.
Let V., be the Kuranishi space based at I and let vy € V, represent the complex structure
|. Assume that
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1. (w, ]) is an optimal symplectic connection;
2. the relative automorphism group
Aut(mty) := {f € Aut(Y,Hy) | fom = 7'(}
is discrete.
3. the group Aut(Xy, Hy) is independent of B, and will be denoted G.

Then for any small deformation v of vg in VI there exists a pair (x,v) € TV such that
(w, D(x)) is relatively cscK and v generates a complex structure |, and a Kihler potential
@ such that

W +1ddg

is an optimal symplectic connection with respect to ], where the d, d operators are with
respect to D(x).

Proof. The proof consists of proving that the operator 4.9 is an elliptic operator
with a trivial kernel so that we can apply the implicit function theorem. We note
that this can be done even though V;} may be a singular complex space. Indeed,
let X — B X V be a family of holomorphic submersions such that the fibre over
0 € V} is X — B. By the Kuranishi theorem [49, §1] we can locally consider a
smooth trivialisation of the family over V! such that the complex structures of the
fibrations Xy — B X {x} form a smooth family {Js}.

As before, let I denote the complex structure of X. As we assume that (w, I, v¢)
is an optimal symplectic connection, G(0,0, vp) = 0. The derivative with respect to
the first component, given by Lemma 4.8 and 4.9, is

d1G(0,0,00)(@) = ~R*R(p) — LA A(p) = —L(¢).

The hypothesis on the automorphism group implies that the kernel of the lineari-
sation is empty, so the implicit function theorem guarantees that there exists a
map

{(x,v) € TVy | x is K5-polystable} — W>!(X)

(x,0) — ¢(x,v)

such that locally around (0, 0, vo)

G(p(x,v),x,0) = 0. (4.10)

The function ¢(x, v) is smooth by the standard theory of regularity of solutions
to elliptic partial differential equations, applied to the operator G [3, Theorem 41].
Therefore solutions to (4.10) produce optimal symplectic connections. O
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4.3 The moduli space of optimal symplectic connections

4.3 The moduli space of optimal symplectic connections

Let (Y,Hy) — B be a relatively K-semistable holomorphic submersion with a
degeneration to a relatively cscK fibration (X, Hx) — B. Assume that we have a
relatively Kadhler metric (w, J) on Y that is an optimal symplectic connection. Let
W be the subset of the Kuranishi space V; that corresponds to fibrations satisfying
the hypotheses of Proposition 4.10. Then W is an open subset of the locally closed
subvariety V¥ described in §4.1 by Proposition 4.10.

Lemma 4.11 ([27, Corollary to Proposition 2]). The group Aut(mnty) is a subgroup of
Aut(Y, Hy) with finitely many connected components.

In particular, under our assumption Aut(my) is a finite discrete group. Let V,
be the Kuranishi space of the fibration 77y and let

T: Ve, = Vi

be the map given by completeness of the Kuranishi space. If we denote T IW = Wy,
then Wy is a locally closed subvariety of V7, .

Let Y — B X Wy be the Kuranishi family of fibrations which admit an optimal
symplectic connection, with central fibration Y — B. The quotient

Wy /Aut(mty) (4.11)

is a local complex space and it is Hausdorff since it is the quotient of a variety by
a finite group. We now explain that we can glue the quotients (4.11) to obtain a
global Hausdorff moduli space M of fibrations that admit an optimal symplectic
connection.

Remark 4.12. The moduli space M depends on the group G = Auty(Xp, Hp). In
other words, M parametrises all fibrations ty : Y — B such that they have discrete
relative automorphism group and such that they degenerate to a relatively cscK
fibration whose fibres have G as their automorphism group.

The following result builds on [31, Proposition 6.5] and [30, Lemma 3.8].

Lemma 4.13. Let Y and Y’ over Wy be two families of fibrations that admit an optimal
symplectic connection. The group of isomorphisms between Y and Y’ that preserve the
fibration structure, denoted Isomw, (Y, Y’, B), is proper over Wy.

Proof. Let y; — i be a convergent sequence in Wy and consider a family of isomor-
phisms f; : Yy, — Y, preserving the projection onto B. Such isomorphisms are
fibrewise isometries with respect to the underlying fibrewise Riemannian metrics.
Therefore there exists a subsequence { f;, } which converges in the C"-topology to a
fibrewise C"-isometry f : Yy — yyf [30, Lemma 3.8]. Moreover, f is a biholomor-
phism because it is the limit of biholomorphic maps. Therefore the convergence
takes place in Isomy, (Y, Y’, B), which is then proper over Wy. O
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The global definition of M relies on the following lemma, whose proof follows
from [1, XL.6].

Lemma 4.14. Let Y — B X Wy be a family of fibrations that admit an optimal symplectic
connection. For any points y, w € Wy, the fibrations Y, — B and Yy, — B are isomorphic
if and only if there exists an element g € Aut(my) such that g(w) = y.

Proof. We can prove the lemma for the entire relative Kuranishi space V,. The
statement follows from:

1. Forany y € Vp,, the automorphism group Aut(ny, ) is contained in Aut(mty);

2. For any y € Vp, there exists an Aut(ny, )-invariant open neighbourhood U,
such that any isomorphism between fibres of Yl¢;, — U, is induced by an
element of Aut(my,).

We begin by proving the second statement. Assume by contradiction that there
exist two sequences {y,} and {w,} both converging to y and that there exist {g,}
in Aut(my,) \ Aut(ry) such that g, - w, = y,. Then by Lemma 4.13 there exists

g € Aut(mty,) such that g, — ¢. Up to replacing g, with g, ¢~ and w,, with g"'w,
we may assume that g is the identity of Aut(nty,). Consider the map

Aut(mty) X Vi, — FI}V
(ny)—n-y.

By Theorem 2.21, this is a local biholomorphism at (id, y). So we have F(id, y,) =
F(gn, wy). Hence g, = id, a contradiction.

The first claim then follows exactly as in [1, p.204]. We report the proof for
completeness. Set

I= {(y,g) € Wy x Aut(nyy)}.

Then I is equal to Isom(Y, Y, B). Up to shrinking Wy we can assume that any con-
nected component I’ of I intersects {0} xAut(my). Let] = {(y, g)el' | ge Aut(rcy)}.
Then T is non-empty and Zariski-closed. It follows from 2 that T contains an open
set. Thenl = I ’, which concludes the proof. m]

To glue the charts (4.11), we use the completeness of the Kuranishi space.
Let Y1 — B be another relatively K-semistable fibration which admits an optimal
symplectic connection and is close to Y — B. Then the Kuranishi theorem gives a
map

T:Vry, = Vi

suchthatafamily 1 — BX V7, isisomorphic to the pull-back via 7 of Y — BXVr, .
Consider the composition of this map with the inclusion i : Wy, — Vg, :

toi: Wy — Vg,.
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Let y1 € Wy,. Then y; represents a fibration with an optimal symplectic connection,
i.e. theimage of y; via the Kuranishi map is a complex structure [, such that (w, J,,)
is an optimal symplectic connection. Therefore, there is a representative y of J,, in
Vr, which belongs to Wy, so

a:=to0i: Wy — Wy.
Lemma 4.14 allows us to pass to the quotient and obtain an isomorphism
a : Wy, /Aut(mty,) — Wy /Aut(nty), (4.12)

which is uniquely determined (while « itself might not be). Indeed, the inverse is
constructed by reverting the roles of Y and Y;. Therefore, we can use it to glue the
local charts to give M the structure of a complex space.

Proposition 4.15. The space M is a Hausdorff complex space with at most countably
many connected components.

Proof. The countability follows from [30, Theorem 7.3]. We prove the Hausdorff
property. Let Y — B X Wy and Y — B X Wy, be two families of fibrations
which admit an optimal symplectic connection. Let y; — 7 be a sequence in Wy
and y1; — ¥1 be a sequence in Wy, and assume that Y/, is isomorphic to Y1,,,, as
fibrations over B. Following the proof of [27, Proposition 10], we show that Y; — B
is isomorphic to Y1, 5,. Let

WZWyXWyl,

and let Y — Bx W and Y — B x W be the pull-back of Y and Y; using the
projections of W onto the first and second component respectively. Consider

L={(y, )€ W | Y, — B is isomorphic to Y1, — B}.
It follows from the properness of Isom(g , 31, B) that X is a locally closed analytic
subvariety of W. Therefore (i, i/1) € L, which concludes the proof. O
We have proven the following.

Corollary 4.16. There exists a Hausdorff complex space M which parametrises holomor-
phic submersions over a fixed base admitting an optimal symplectic connection, with fixed
relative automorphism group.

4.4 A Weil-Petersson type Kidhler metric

In this section, we define a Kéhler metric on the moduli space of fibrations admitting
an optimal symplectic connection. We do so by describing a relative version of the
theory of Weil-Petersson type metrics developed by Fujiki and Schumacher for
cscK manifolds [31, Sections 8, 9]. In particular, we first define the Weil-Petersson
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metric locally on the sets Wy and subsequently we extend the definition to the
charts Wy /Aut(my) and then to the moduli space M.

Consider a family of holomorphic submersions that admit an optimal symplec-
tic connection, denoted by Y — B X Wy, and let Y — B be the central fibration.
Let w; be also the optimal symplectic connection on Y; — B. For each k sufficiently
large, wix = w; + kwp is a Kdhler form on Y}, and we denote by w; r its purely
vertical part. Let Y — Wy be the composition with the second projection.

From Theorem 2.21 together with Proposition 2.23, for each t € Wy there is an
injective map

di® : TiWy > HY,(Yr) € QU1 V0) (4.13)

that identifies a vector a in the Zariski tangent space T; Wy with a (0, 1)-form valued
in the (1, 0)-tangent bundle of Y;, which we will also denote by a. The map (4.13)
is equivariant with respect to the action of Aut(my). Therefore we can define an
inner product on T;Wy by pulling back the L?-product on Qo'l(q/;t’o) induced by
the Hermitian metric associated to w; r + wp. For any «, f € T;Wy, its imaginary
part is given by

Qi(a, B) :=={a, By praws = / Awt/FWBTrwtlF(aE)w:” A wg, (4.14)

Y}

where we denote by A the contraction of the covariant part and by Tr the trace of
the contravariant part. We give the following definition.

Definition 4.17. The relative Weil-Petersson metric on Wy, denoted by Qp, is the
two-form {Q; }rew, .

Using the compatibility of the deformations with the Kidhler form, we write the
trace in coordinates as

Awt/F‘FwBTrwt,F(aE) = aaqﬁbﬁ(wt,P)aE(wt,F +wp)? = aa[,ﬁbﬁ + ACUBTrCUt,F(aE)‘

Therefore the integral (4.14) can be written as the sum

L aagﬁbﬁw? A “)g +£/ Aa)BTra)t,F(aB)w:n A a)g'
f t

Remark 4.18. The first term can be split over Y; as

/B (/yt,b “uﬁﬁ_bﬁ“’:n) - (4.15)

In particular, it vanishes when a and g restrict to the trivial deformation on the
fibres. This is the case when Y — B X Wy is a family of holomorphic submersions
with rigid fibres, for example.
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We next prove that (4.14) is closed and positive definite. Consider for each
t € Wy a k-dependent inner product on H}V(Yt), defined using the Kahler form
gk of Yy

Qk,t(a,ﬁ) I:/<a,,3>wt,kw?/;m :/ Awr/kTrwr,k(aE)w?,_l‘(—m'
Yf Yt

The collection {Q; r} =: Q is the Weil-Petersson type Hermitian metric defined in
Definition 1.29 for any family of smooth polarised varieties. Using Lemma 4.7, we
can write in local holomorphic coordinates

(@, By = a4B (@5 (@i ) = a%BY% + k7 Ay Tra, (@) + O (k72).

The expansion in powers of k of w; x reads

n-1

k
n+m _ 1.n,.m n m+1 n-1 n-2
Wy =k a)t/\a)B+—n W' A wy +O(k )

Then

Qi k(a, p) = k" /Y aagﬁbﬁw;n A wp + k" [/Y “agﬁhﬁw;nﬂ A a)g_l
t t

(4.16)
+0 (k"72).

+/ AwpTro, (@Bl A 0l
Y

Then the two terms in the sum (4.14) are the first and third coefficients of this
expansion.

We next describe a fibre integral formula for the Weil-Petersson metric on Wy.
Let wy x be the relatively Kdhler metric on Wy such that its restriction to each Y;
is the Kédhler metric w¢ + kwp, where w; is an optimal symplectic connection on
Y; — B. Let also py x be the curvature of the Hermitian structure induced by wy «
on the relative anticanonical bundle

n+m
—Kywy, = /\ Vywy,

where Vy i, denotes the vertical tangent bundle of the fibration Y — Wy. From
the fibre integral formula of Theorem (1.30), the k-dependent (1, 1)-form Q) can be
written as a fibre integral over the map Y — Wy:

1

Qr(w = - A Cl)n+m + —
K@y ) /y/wy Pyk Nwyyl +

/ Scaly(wy o}y ™. (4.17)
Y /Wy ’

By expanding O (wy i) in powers of k, we can find a fibre integral formula for the
Weil-Petersson metric (4.14). Since the base B is fixed, the relative metric wy  can
be written as

Wy = @+ kw B,
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were the restriction of @ to each Y; is the optimal symplectic connection w;. Then
Py i can be expanded in powers of k as
py x = iddlog (K"@™ A wlh + O (k"))
= iddlog (@™ A wli) + O (k™)
= iddlog det(®) + iddlog det(wp) + O (k')

where the second line follows from the fact that @™ A a)l’; is a volume form. The k~1-

term is exact, because the two volume forms C‘)JW/Hkn and @™ A wg bothinduce the class

c1(=Ky,w,). Moreover, det(@) is the relative determinant of @ and idd1og det(@)
is the curvature of the Hermitian metric induced by @ on the relative anticanonical
bundle —Ky, gxw,. To compute the expansion of the vertical scalar curvature,
Proposition 3.1 gives the expansion

Scal(a)k) = §b + k! (Scal(a)B) - AwB awp + pE(@(w))) +0 (k—3/2) ,

where S, p is the average scalar curvature of the fibres and awp is the Weil-Petersson
metric on B induced by the relatively cscK degeneration X — B. Then, since @
is an optimal symplectic connection when restricted to each Y}, the vertical scalar
curvature of wy y admits an expansion as

Scaly(wy k) = Sp + k™! (Scal(wp) — Ay @) + O (k72),
where a is a closed two-form on B. Then the leading order term of (4.17) is

Iy = —/ iddlogdet(@w) A @™ A wy + Sy A wy
Y[ Wy

n+m+1/y/wy

The sub-leading order term is the sum of the four integrals

L=- /y/w iddlog det(@) A @™ A Wi, (4.18)
Y

1 ~
= —— Sp@"™2 A W,
2 n+m+1/y/WY b B

1 —
Iz = ——/ Scal(wg)@™! A wg,
nJywy
1 ~ ~mt1
= /y/wy (Scal(wp) — Aw @) @™ A wy.

We can use this expansion to prove a fibre integral formula in our setting.

Lemma 4.19. The Weil-Petersson metric Qwp(wy) (4.14) can be written as the fibre
integral
I+ DL+ 15+ 14 (419)
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Proof. It follows from [31, Lemma 8.5] applied to the family Y — B x Wy that the
two-form defined as the collection of the integrals

a_b m+1 n-1
/YO‘;;‘BaC‘)t A wg
t

isequal to I. Indeed, working locally in D C B X Wy, Fujiki and Schumacher prove
that one can trivialise the family Y over D as Yo X D such that the horizontal
distribution induced by @ is preserved. Then, given a family {B;} of vertical
deformations of the complex structure of Yy o which represent the family Yy oxD —
D, [31, Lemma 8.5] gives the equality

idd log det(@) = Tr(d;B: It:o?ﬁthzo)l
where d,f; is the map (4.13). O

Lemma 4.20. The two-form Qp is closed and positive-definite on Wy.

Proof. Since the map (4.13) is injective, the integral (4.14) is positive. To prove
closedness, we show that the terms Iy, I, Is and I; in Lemma 4.19 are closed. The
terms Iy and I, are closed because they are the fibre integrals of a closed form. The
term I4 can be written as

/ (pp — Q) A @™ A wht,
Y /Wy

where pp is the Ricci form of wg. In particular (pp — @) A w} ™! is a top degree form
on B, hence it is closed. So I is closed. Analogously, I5 is closed. O

Let hyp(Wy) be the Hermitian metric on the tangent bundle to Wy induced by
the two-form Qwp.

Theorem 4.21. The Hermitian metric hyp(Wy) induces a global Kihler metric on the
moduli space M.

Proof. The theorem follows from the fact that the action of the finite group Aut(mty)
is induced by an automorphism of the Kuranishi family, so the Weil-Petersson
metric hyp(Wy) is invariant for the action of Aut(mry). Therefore it defines a metric
on the quotient Wy /Aut(mty). O

Remark 4.22. We have defined a Weil-Petersson metric on Wy that is independent of
the adiabatic parameter k. This is reasonable from the point of view of describing
the moduli space of fibrations using the optimal symplectic connection alone,
which is only relatively Kdhler. However, it is possible that a different kind of a
Weil-Petersson type metric could be defined by taking a sequence of Kdhler metrics
that depend on k, where the adiabatic construction plays a bigger role.
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44.1 The determinant line bundle for the Weil-Petersson metric

We construct a line bundle on Wy, and hence on the moduli space, such that the
Weil-Petersson metric represents its first Chern class. To do so, we appeal to the the-
ory of Deligne pairings [22], [23], [5, §1]. Let M — B be a flat, projective morphism
between complex algebraic varieties of relative dimension 4 and consider d +1 line
bundles Ly, ..., Ls on M. The push-forward of the intersection product of L, ..., Ls
is an isomorphism class of line bundles on B, represented by the cohomology class

/ C](L()) VANRERIVAN Cl(Ld). (4.20)
M/B

The Deligne pairing of Lo, ..., L4, denoted by (Lo, ..., Li)m/B, is a canonical choice
of a line bundle on B such that (4.20) is its first Chern class. The construction
is symmetric, multilinear and functorial. Moreover, if hy, ..., h; are Hermitian
metrics on Lo, ..., Ly respectively, the theory provides a metric {ho,...,ha)m/p
on (Lo, ...,Ls)m/p. Denoting by wy,...,ws the curvature forms of ho,...,hy
respectively, the curvature of (hy, ..., h4)m/p is given by the fibre integral

/ wo A Awg. (4.21)
M/B

The fibre integral formula for the Weil-Petersson metric on Wy of Lemma 4.19
is a special case of the expression (4.21). To describe it as the curvature form of a
line bundle on Wy, we first recall the following result of Fujiki and Schumacher for
the k-dependent Weil-Petersson metric.

Proposition4.23 ([31,8§9]). The k-dependent Weil-Petersson type Kihler metric Qi (wy )
represents the first Chern class of the line bundle

1 —Ky - (Hy + kL)n+m_1
n+m+1 (Hy + kL)n+m

— (—Kywy, Ly wy + LNy wy, (422)

where the constant
A _KY . (HY + kL)n+m—1

SY = Ty + kL)

is the average scalar curvature of Y, and hence of each Yy, with respect to the metric w +kwp.

We use Proposition 4.23 to prove the following.

Proposition 4.24. There exists a line bundle D(Y) on Wy whose first Chern class is
represented by the Weil-Petersson metric (4.14).

Proof. Let H — Y be the relatively ample line bundle induced by each relative
polarisation H; — Y;. More precisely, we consider the fibration Y — Wy as the
composition of

Y — Bx Wy —» Wy
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4.4 A Weil-Petersson type Kihler metric

so H is relatively ample with respect to the first projection. Moreover, since the
base B is fixed, we can pull-back L to Y and consider it as a line bundle on Y. So
we can define a relatively ample line bundle Ly over Y as

Li=HKL, (4.23)

whose fibre over Y; is Li|; = H;®kL. Its first Chern class contains the relative metric

wy k, where @ is in ¢1(H). We define a line bundle D(Y) — Wy by using the fibre
integral formula (4.19) and the expansion in powers of k of the line bundle (4.22).
Expanding in k the intersection product L™, £*"*! and the expression (4.22)
we obtain that the Weil-Petersson metric Qwp(wy ) represents the first Chern class
of the line bundle D(Y) given as the tensor product of the line bundles

DO(Y) = _<_Ky/BXWy/7-{m/Ln>y/Wyl
1 —Kyp - L" - Hy ™!

n+m+1 L™ - HY

Da(Y) = ~(=Kg, H"™, L")y,

1 (_KY/B . H{(n—l . Ln) (H;n+l . Ln—l)

n+m+1 H;”-L”

Dr(Y) =

((WmH,L")y/wy + <7_(m+2’ Ln_l>}//Wy) ,

Dy(Y) = (H™, L")y 1wy,

defined using the Deligne pairing. Indeed, by expanding the expression (4.22) in
powers of k we see that the sum of the leading order term and the sub-leading
order term is given by

Do(Y) + Di(Y) + DoY) + D3(Y) + Da(Y),
where D1(Y) is given by

Di(Y) = —(—Ky/pxwy, H™ 1, L Yy -

However, its first Chern class is represented by the term (4.18), which does not
appear in the fibre integral formula for the relative Weil-Petersson metric of Lemma
4.19. This concludes the proof. m]

We have constructed a line bundle Dy on Wy whose first Chern class is the
Weil-Petersson metric Qwp(wy x). Letnow p : Wy — M be the composition of the
maps

Wy — Wy/Aut(ny) — M,
where the first map is the quotient by the group action and the second map is the
inclusion of a local chart in the moduli space. It follows from Lemma 4.14 that
the orbits of the Aut(my)-action on Wy correspond to isomorphic manifolds in the
family Y — Wy. Therefore the line bundle D(Y) is invariant for the action of
Aut(7ty) and thus descends to a line bundle 5(Y) on the quotient Wy /Aut(my).
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Theorem 4.25. There exists a line bundle F on the moduli space M such that its restriction
to each chart Wy | Aut(mty) it is isomorphic to D(Y).

Proof. Let Wy, /Aut(nty,) and Wy/Aut(rty) be two local charts of M with non
empty intersection. Then using completeness of the Kuranishi space there ex-
ists an isomorphism a : Wy, /Aut(ny,) — Wy /Aut(my) (4.12) which preserves the
relative polarisation (4.23) and the submersions onto the base B. By functoriality
of the Deligne pairings, the pull-back aD(Y) is then isomorphic to D(Y). There-
fore, on the intersection of Wy /Aut(ny) and Wy, /Aut(my,) there is a morphism
of line bundles x : ZS(Yl) = 5(1/). Let @y : ZS(Y) — Wy /Aut(mty) X C and
Py, : D(Y1) = Wy, /Aut(mty,) X Cbe local trivialisations and, on the intersection,

Yyyy = @y o x o gyl

The map ¢y,y, viewed as a function on C is invertible, with inverse ¢yy,. Indeed,
the map x is an isomorphism because « is. The same argument proves that the
cocycle condition holds. ]

The following corollary is a consequence of Theorem 4.25 and of [31, Proposition
1.7].

Corollary 4.26. Any compact analytic subspace of M is projective.
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