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Abstract. We prove a finite-dimensional moment map property for certain canonical rela-
tively Kähler metrics on holomorphic fibrations, called optimal symplectic connections. We
then relate the existence of zeroes of this moment map to the stability of the fibration, where
the stability property we consider is a version of K-stability that takes into account the fi-
bration structure, first introduced by Dervan–Sektnan. In particular, we prove that a stable
deformation of a fibration admitting an optimal symplectic connection still admits an opti-
mal symplectic connection, through a new approach using the finite-dimensional moment map
properties and the moment map flow.

We include an appendix with a proof of a result considered by Székelyhidi that a K-
polystable deformation of a constant scalar curvature Kähler manifold still admits a constant
scalar curvature metric, using the same technique.

1. Introduction

Let (M,ω) be a symplectic manifold, and K a compact group acting on it by symplectomor-
phisms. The action is said Hamiltonian if there exists a map µ : M → Lie(K)∗, called a moment
map, that is equivariant with respect to the action of K on M and the co-adjoint action on the
dual Lie algebra, and that satisfies

dx⟨µ, ξ⟩ = ω(−, σx(ξ)),

where σ denotes the infinitesimal action. Since a Hamiltonian function is only unique up to a
constant, the role of the moment map is to choose a Hamiltonian function for the infinitesimal
vector fields. When the manifold M is projective and ω is in the first Chern class of a ample line
bundle L, the notion of a moment map is related to the algebro-geometric notion of stability in
the sense of Geometric Invariant Theory (GIT). Originally introduced by Mumford [38] to study
the moduli space of holomorphic vector bundles, GIT stability is related to moment maps by the
Kempf–Ness theorem [30] which establishes an equivalence between the existence of zeroes of a
moment map in a given orbit and the GIT polystability of the orbit.

Donaldson [17] and Fujiki [21] extended the theory of Hamiltonian actions to the infinite-
dimensional setting of Kähler metrics and complex structures, and they proved that the constant
scalar curvature operator is a moment map for the action of the group of Hamiltonian symplec-
tomorphisms on the space of almost complex structures on a compact symplectic manifold. The
Yau-Tian-Donaldson [51, 48, 19] conjecture is an infinite-dimensional analogue of the Kempf–
Ness theorem: it predicts that the existence of a constant scalar curvature Kähler (cscK) metric
is equivalent to an algebro-geometric notion of stability, K-stability, which is not a genuine GIT
notion but parallels GIT stability in the infinite-dimensional setting. While still open in full
generality, the conjecture is known to be true for Fano varieties, due to Chen–Donaldson–Sun
[5, 6, 7]. The fact that the existence of constant scalar curvature Kähler (cscK) metrics implies
K-stability is also a theorem of Donaldson [19], Stoppa [45] and Berman–Darvas–Lu [2].

A finite-dimensional result in the opposite direction was first considered by Székelyhidi [46]: a
K-polystable infinitesimal deformation of a cscK manifold still admits a cscK metric. Székelyhidi’s
technique uses that the scalar curvature function is a moment map on the finite-dimensional
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vector space that parametrises infinitesimal deformations of a cscK manifold. There is a gap,
however, in Székelyhidi’s proof, explained in Remark A.2.

In this paper, we prove a moment map property and we establish an analogous result in
the setting of holomorphic fibrations. Instead of cscK metrics, on the fibration we consider a
canonical choice of a relatively Kähler metric, called an optimal symplectic connection [14, 41].
Our main result is the following.

Theorem 1.1. Let Y → B be a proper holomorphic submersion admitting an optimal symplectic
connection and let W → B be a deformation. If W → B is stable, then it admits an optimal
symplectic connection.

We use a new technique to prove this: it consists in reducing the infinite-dimensional problem
of finding a solution to a PDE to a finite-dimensional problem of finding a zero of a moment map
on the Kuranishi space, for which we rely on the recent theory of Dervan–Hallam [11]. Then we
use the stability condition and the moment map flow to find an actual solution.

A similar approach, using moment map flows, was recently used in a different class of problems
by Dervan [10], Delloque [9], and the author with Sektnan [42]. One key novelty in the proof
of Theorem 1.1 is that we need to prove a “stability” result for the moment map flow showing
that the flow remains in a bounded region inside the Kuranishi space (Proposition 2.4). This is
what allows us to use the moment map flow uniformly across a neighbourhood of the origin in
the Kuranishi space.

In an appendix to this paper, we use the same approach to prove the following result on
K-polystable deformations of cscK manifolds, already mentioned above. This fixes a mistake in
Székelyhidi’s discussion [46, Proposition 8].

Theorem 1.2. Let X be a cscK manifold and Y be a K-polystable deformation of X. Then Y
admits a cscK metric.

We next briefly explain the optimal symplectic connection condition and the notion of stability
we employ. Let Y → B be a proper holomorphic submersion and let us fix an ample line bundle
L on the base and a relatively ample line bundle HY over Y . The base (B,L) and the relative
polarisation HY are considered fixed throughout. To define optimal symplectic connections, we
need to impose the following condition on the fibres, given in terms of analytic K-stability: we
require that the submersion (Y,HY ) → (B,L) degenerates to a submersion (X,HX) → (B,L)
whose fibres admit a cscK metric. A two-form ω ∈ c1(HY ) induces a splitting of the tangent
bundle of Y into a vertical and a horizontal part, defined by orthogonality with respect of ω,
and is thus called a symplectic connection. An optimal symplectic connection is defined as the
solution to the geometric partial differential equation

pE(∆V(ΛωB
(γ∗FH)) + ΛωB

ρH) + λ

2 ν = 0. (1.1)

In this expression, FH, ρH and ν are curvature quantities which depend on ω and λ > 0 is a
constant. The map pE is the projection onto the global sections of the vector bundle E → B of
fibrewise holomorphy potentials with respect to the relatively cscK complex structure of X.

Optimal symplectic connections were first introduced by Dervan–Sektnan [14] in the case
when the fibres admit a constant scalar curvature metric, and generalised by the author [41] in
the relatively (i.e. fibrewise) K-semistable case. The condition reduces to the Hermite–Einstein
equation when the fibration is defined as the projectivisation of a holomorphic vector bundle.

In [39] the author has developed an analytic deformation theory for optimal symplectic con-
nections. The objective there was to construct an analytic moduli space of holomorphic fibrations
with discrete automorphisms. Given a fibration Y → B admitting an optimal symplectic connec-
tion, there exists a complex analytic space, denoted by V +

π , that parametrises the deformations
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of the complex structure of Y → B that are compatible with the relatively symplectic form
and that preserve the projection onto the base and the property of degenerating to relatively
cscK fibrations. In the study of deformations, it is crucial to allow K-semistable fibres, since the
relatively cscK condition is not open.

Theorem 1.1 answers the question of when a deformation of the type just described still
admits an optimal symplectic connection. In particular, we relate the optimal symplectic con-
nection property to stability of fibrations, introduced by Dervan–Sektnan [15] and modelled on
K-stability. They introduced a notion of fibration degeneration that extends the one of test con-
figuration to account for the fibration structure, and they define stability in terms of a numerical
invariant derived from the Donaldson-Futaki invariant. In parallel with the Yau-Tian-Donaldson
conjecture and the Hitchin-Kobayashi correspondence, Dervan–Sektnan predicted that a holo-
morphic submersion is stable if and only if it admits an optimal symplectic connection, and they
proved that the existence of a solution implies (semi)stability. Their result, and the definition
of stability itself, were further improved by Hallam [25]. Theorem 1.1 provides the first result
proving that the existence of a optimal symplectic connection follows from the stability of the
fibration.

We finally describe in more detail the technique of the proof of Theorem 1.1 in the context of
optimal symplectic connections: it consists of three steps. First, we perturb the relatively Kähler
metric so that the optimal symplectic connection operator lies in the Lie algebra of the reductive
group KC

π,v of automorphisms of the equation; this uses the linearisation of the equation and the
implicit function theorem.

Then, we prove that the optimal symplectic connection operator is a moment map on V +
π

for the action of KC
π,v. The Dervan–Hallam approach [11], which we use at this step, consists

of defining the moment map through the universal deformation family. The advantage is that,
by changing at the same time the Kähler metric and the complex structure, we obtain an in-
terpretation of the scalar curvature as a finite-dimensional moment map with respect to the
Weil–Petersson Kähler metric. This is in contrast with the more classical approaches to pertur-
bative problems, which fix the Kähler form and vary the complex structure, and thus produce a
finite-dimensional moment map for the scalar curvature with respect to a symplectic form which
is not Kähler.

The final step of the proof is to use the moment map flow for the finite-dimensional moment
map; this is where the stability assumption is used. In particular, having a Kähler moment
map is crucial for applying the moment map flow. Frequently used in the symplectic approach
to GIT, the moment map flow is the flow along the gradient of the moment map squared; we
mostly follow the formultation of Dervan–McCarthy–Sektnan [12, §4.2], which in turn builds on
[24, 8], and we extend these works to apply to the case of non-trivial stabiliser. The flow starting
from the point w ∈ V +

π that corresponds to a stable fibration W → B converges to a point w∞
inside V +

π , representing a deformation of the fibration; this is where we use our “stability” result
for the moment map flow. We prove that the stability of W → B implies that w∞ is a zero of
the associated moment map and it belongs to the KC

π,v-orbit of w. Hence it is a solution to the
optimal symplectic connection equation.

Our proof of Theorem 1.2 consists of the same three steps, but applied to the technically
simpler case of cscK metrics.

Outline. In Section 2 we review the moment map flow and K-stability. We also describe the
theory of deformations of cscK metric in the context of varying the Kähler form and the complex
structure at the same time. In Section 3, we review the theory of deformations of fibrations and
of optimal symplectic connections and we prove a Matsushima-type criterion for the group of
automorphisms of the optimal symplectic connection equation. In Section 4.1 we prove that the
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optimal symplectic connection operator is a moment map for the action of said group on the
finite-dimensional space of infinitesimal deformations and we prove Theorem 1.1. In Appendix
A we give a proof that a K-polystable deformation of a cscK manifold admits a cscK metric.
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and Jacopo Stoppa for many discussions on the subject of this paper. I thank Andrés Ibáñez
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for financial support. I thank the Isaac Newton Institute for Mathematical Sciences, Cambridge,
for support and hospitality during the programme New equivariant methods in algebraic and
differential geometry where work on this paper was undertaken. This work was supported by
EPSRC grant no EP/R014604/1.

2. Preliminaries

In this section, we recall some definitions and results on the moment map flow, on K-stability
and on deformations of Kähler metrics with constant scalar curvature.

Let (M,L) be a polarised Kähler manifold with a fixed ample line bundle L, ω a Kähler form
in the first Chern class of L and let J be the complex structure of M . We denote by g = g(ω, J)
the Riemannian metric on M induced by J and ω, i.e.

g(·, ·) = ω(·, J ·).
The scalar curvature of the Kähler metric g(ω, J) is a smooth function on M defined as the

contraction of the Ricci curvature:
Scal(ω, J) := ΛωRic(ω, J).

We consider Kähler metrics with constant scalar curvature, where the constant is given by
the intersection product

Ŝ = n c1(M) · c1(L)n−1

c1(L)n .

In particular, Ŝ is a topological constant fixed by the polarisation.
Let Aut(M,L) be the group of automorphisms of M which lift to L and let h0 be its Lie

algebra. Then h0 can be characterised as the space of holomorphic vector fields that can be
written as the Riemannian gradient ∇gf , for some function f called a holomorphy potential for
the holomorphic vector field. Let K = Isom(M,ω) be the group of holomorphic isometries of
the Kähler metric (ω, J) and let k be its Lie algebra. A well-known result of Matsushima and
Lichnerowicz, known as the Matsushima criterion or the Cartan decomposition, states that when
ω is cscK, the group Aut(M,L) is reductive [37, 35] (see also [23, §3.4]).

Theorem 2.1. Suppose that there exists a constant scalar curvature Kähler metric in c1(L).
Then

h0 = k0 ⊕ Jk0,

i.e. the group Aut(M,L) is reductive.

2.1. The moment map flow. The moment map flow is the geometric flow along the gradient of
the norm squared of the moment map. It appears frequently in differential-geometric approaches
to GIT [18, 8, 24, 12]. We explain some properties of existence and stability that will be used in
the following sections.

Let (V, ω) be a Kähler manifold, which we do not assume is compact. A vector field η is
Hamiltonian with respect to ω if there exists a function h ∈ C∞(V,R) such that

ω(η, ·) = −dh.
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We say that h is the Hamiltonian function of η. On a Kähler manifold η = J∇g(h), where ∇gh
is the Riemannian gradient of h. A Hamiltonian vector field with Hamiltonian h is also called
the symplectic gradient of h, and denoted by gradωh.

Definition 2.2. Let K be a Lie group that acts on V by symplectomorphisms, i.e. for any
g ∈ K, g∗ω = ω. Let k be the Lie algebra of K. For any element ξ ∈ k, the infinitesimal action
of ξ is the vector field

σx(ξ) = d
dt

∣∣∣∣
t=0

(exp(−tξ) · x) .

We say that the action is Hamiltonian if there exists a moment map

µ : V → k∗

that is equivariant with respect to the K-action on V and the co-adjoint K-action on the dual
Lie algebra k∗ and such that for each x ∈ V

dx⟨µ, ξ⟩ = ω(·, σx(ξ)),

i.e. ⟨µ, ξ⟩ is a Hamiltonian function for the vector field σ(ξ) on V . We often use the notation σξ
for σ(ξ).

It is clear from the definition of a Hamiltonian vector field that the Hamiltonian function is
only unique up to a constant. The moment map then chooses a Hamiltonian function for the
infinitesimal vector field. We next fix a bi-invariant inner product on k with rational coefficients
on the centre of k, and we use it to identify k and k∗; therefore, we view the moment map as a
map with values in k.

Definition 2.3. Let x ∈ V . The moment map flow associated with the moment map µ with
starting point x is

d
dtxt = Jσ(µ(xt))

where σ(µ(xt)) is the infinitesimal vector field associated to the function µ(xt) and J is the
almost complex structure of V .

In particular, the moment map flow is the negative gradient flow of the norm squared of the
moment map, i.e.

Jσ(µ(x)) = −1
2∇∥µ(x)∥2.

We denote the flow starting at x as ϕt(x).

Proposition 2.4 (Stability of the flow). Assume that µ(0) = 0. Then there exists a neighbour-
hood N(0) ⊂ V such that for all x ∈ N(0) ⊂ V the moment map flow starting at x remains in
V .

Proof. Let us view V as an open ball inside a projective space Pd: if [x0 : · · · : xd] are homogeneous
coordinates on Pd, the space V can be viewed as an open ball around the origin in the affine
open subset x0 = 0. Following [12, Lemma 4.7], we can extend the action of K, the Kähler form
ω and the moment map µ to Pd in such a way that their restriction to V agrees with the original
data. This allows us to appeal to results proven in the compact setting. Let µPd be the extended
moment map. The moment map flow associated with µPd exists for all time. Moreover [31,
Theorem 4.16] the limit set of the flow is a disjoint union of path-connected closed subsets where
the norm square of the moment map has constant value. Let C be one connected component
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and let SC be the stratum of points in Pd whose flow ends in C. A result of Duistermaat [34]
guarantees that the flow starting at x converges to a single point x∞ and the map

[0,+∞] × SC → SC

(t, x) 7→ ϕt(x)

is a deformation retraction. In particular the map

x 7→ x∞ (2.1)

is continuous. Let now C be the connected component of the limit set that contains the origin
of V ; C is open because the origin is a zero of the moment map, hence in particular is GIT-
semistable by the Kempf–Ness theorem [30], and semistability is an open condition. Since V
is open there exists a neighbourhood N ′(0) ⊂ C contained in V . From the continuity of the
map (2.1), we can find a neighbourhood N(0) in V such that for each x ∈ N(0) the limit point
x∞ ∈ N ′(0). □

Let us fix the starting point x ∈ V ∩ N(0). We next explain how to restrict the flow by
projecting orthogonally to the stabiliser group of x. Let Kx be the stabiliser of x and let T be a
maximal torus in the stabiliser, with t its Lie algebra. Let

kT⊥ = {ξ ∈ k | ⟨ξ, h⟩ = 0 for all h ∈ t}. (2.2)

In particular, one can prove that, assuming ⟨·, ·⟩ is a rational inner product, the Lie algebra kT⊥

corresponds to a subgroup KT⊥ < K and the same is true for its complexification [47, §5.5].
Thus we can define a moment map for the action of KT⊥ by projecting

µT⊥ : V → k → kT⊥ ,

and we can consider the moment map flow associated with the moment map µT⊥ with starting
point x:

d
dtxt = Jσ(µT⊥(xt))

where σ(µT⊥(xt)) is the infinitesimal vector field associated to the function µT⊥(xt).

Proposition 2.5 ([24, Theorem 3.3]). The limit point x∞ ∈ V of the moment map flow starting
at x belongs to the closure of the orbit KC

T⊥ · x and µT⊥(x∞) belongs to the Lie algebra (kT⊥)x∞

of the stabiliser of x∞ under the action of KT⊥ .

Moreover, for the action of KT⊥ , the point x has now discrete stabiliser, and we can state the
following result [12, Corollary 4.14].

Proposition 2.6. Let x∞ be the limit of the moment map flow starting at x. Then exactly one
of the following holds:

(1) µT⊥(x∞) = 0 and x∞ ∈ KC
T⊥ · x;

(2) x∞ /∈ KC
T⊥ · x and there exists a point x̃ ∈ V and an element ξ ̸= 0 in kT⊥ such that

lim
t→∞

exp(−itξ) · x = x̃

and ⟨µT⊥(x̃), ξ⟩ ≥ 0. Further, when ⟨µT⊥(x̃), ξ⟩ = 0, then x̃ = x∞ and µT⊥(x∞) = 0.
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2.2. K-stability. We recall the notion of K-stability, introduced by Tian [49] and Donaldson
[19] to be an analogue for polarised varieties to the Hilbert-Mumford criterion for GIT.
Definition 2.7. Let (X,L) be a polarised variety of dimension n. A test configuration for (X,L)
is the data of

(1) a variety X with a C∗-equivariant flat proper morphism to C;
(2) a relatively ample line bundle L → X together with a lift of the C∗-action to it;
(3) an isomorphism (X1,L1) ≃ (X,Lr) for some r > 0.

We say that (X ,L) is a product test configuration if (X ,L) ≃ (X,Lr) × C, with a possibly
nontrivial C∗-action, and is a trivial test configuration if (X ,L) ≃ (X,L) × C with trivial C∗-
action.

Given a test configuration, one associates a numerical invariant as follows. Consider the
following expansions for the dimension of H0(X ,Lj0) and for the weight wj of the induced action
of C∗ on H0(X ,Lj0):

dimH0(X ,Lj0) = a0j
n + a1j

n−1 +O
(
jn−2)

wj = b0j
n+1 + b1j

n +O
(
jn−1) .

The Donaldson-Futaki invariant, introduced by Donaldson in [19], is the number

DF(X ,L) := a1b0 − a0b1

a2
0

.

The following result [19] (see also [33] for a generalisation) relates the Donaldson-Futaki invariant
with the classical Futaki invariant

Fut(σh) =
∫
X

(Scal(ω) − Ŝ)hωn,

where σh ∈ h0 and h is its holomorphy potential.
Theorem 2.8. When the central fibre is smooth, the Donaldson-Futaki invariant satisfies

DF(X ,L)
n! = −πFut(σh),

where σh is the holomorphic vector field generating the C∗-action.
If (X ,L) is a test configuration, one can define the normalization of (X ,L) by taking the

normalization X̃ of X and the pullback of L to X̃ . The normalization is again a test configuration
for (X,L) [44, §5].
Definition 2.9 ([19, 48]). A polarised variety (X,L) is

(1) K-semistable if DF(X ,L) ≥ 0 for all test configurations (X ,L) for (X,L);
(2) K-polystable if it is K-semistable and DF(X ,L) vanishes only if (X ,L) normalises to a

product test configuration;
(3) K-stable if it is K-semistable and DF(X ,L) vanishes only if (X ,L) normalises to the

trivial test configuration.
2.3. Deformation theory of Kähler metrics with constant scalar curvature. The de-
formation theory of cscK manifolds was developed by Székelyhidi [46], Brönnle [3], and more
recently by Dervan–Hallam [11] with a different approach; in this section we explain and com-
bine the two approaches.

Let (M,L) be a polarised Kähler manifold and let ω be a fixed Kähler form in c1(L). Define the
infinite-dimensional manifold J of almost complex structures compatible with ω. The tangent
space at a point J ∈ J can be identified with

T 0,1
J J =

{
α ∈ Ω0,1(T 1,0M)

∣∣ω(α(u), v) + ω(u, α(x)) = 0
}
.
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Let G be the group of Hamiltonian symplectomorphisms of (M,ω). Then G acts on J by
pull-back. The Lie algebra of G can be identified with the space of smooth functions on M with
mean value zero, denoted C∞

0 (M,R).
We fix J ∈ J an integrable complex structure on (M,ω) such that Scal(ω, J) is constant.

The infinitesimal action of G on J is defined by the operator
P : C∞

0 (M,R) → TJJ

h 7→ Lηh
J,

(2.3)

where ηh is the Hamiltonian vector field with function h; let PC be its extension to C∞
0 (M,C).

The deformations of the complex structure J which are integrable to first-order are parametrised
by the finite-dimensional vector space

H̃1 = ker
(
PP ∗ + (∂̄∗∂̄)2) (2.4)

on TJJ . Consider the group of Hamiltonian isometries of (M,ω, J), denoted by K: it is the
stabiliser of the complex structure J for the action of G which means that, by definition, it is
the intersection of G with Aut(M,J).

The group K can be complexified and from Matsushima’s criterion (Theorem 2.1) its com-
plexification is Aut(M,L). In particular, we can realise the Lie algebra of K, denoted k, as the
space of real holomorphy potentials with respect to (ω, J) with mean-value zero; it follows that
the Lie algebra of K can be identified with the kernel of P . Changing the Kähler metric ω to
ω + i∂∂̄φ changes a holomorphy potential h to

h+ ⟨∇h,∇φ⟩,
see [47, Lemma 4.10]. Given ξ ∈ k, we denote by σξ the corresponding infinitesimal vector field
and by hξ the corresponding holomorphy potential.

The following theorem describes the deformations of the cscK complex structure J and their
scalar curvature. In the following, when Jx ∈ J is a non-integrable almost complex structure,
we denote by gx the Hermitian metric induced by (ω, Jx) and by Scal(ω, Jx) its Chern-scalar
curvature. Moreover, for a function φ in the Sobolev space W 2,p(gx) such that ∥φ∥W 2,p ≪ 1, let

ωφ := ω + 1
2(ddcφ)1,1,

where the (1, 1)-part is taken with respect to Jx and ddc = −dJxd. While in general ωφ is not
closed, it satisfies the compatibility conditions

ωφ(Jx·, Jx·) = ωφ(·, ·),
ωφ(·, Jx·) > 0,

thus (ωφ, Jx) induces a Hermitian metric. When Jx is integrable, then ωφ is closed and coincides
with ω + i∂∂̄φ.

Theorem 2.10. There exists a ball around the origin V ⊂ H̃1 and a K-equivariant holomorphic
map

Φ : V → J (2.5)
such that Φ(0) = J and

(1) if two points x and x′ of V are in the same orbit for the complexified action of K, and
Φ(x) is integrable, then their images Φ(x) and Φ(x′) are isomorphic;

(2) for every x ∈ V there exists a smooth function φx on M and ξ ∈ k such that

Scal(ωφx
,Φ(x)) − Ŝ = hξ + ⟨∇gx

hξ,∇gx
φx⟩gx

,

where φx varies smoothly with x.
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Proof. The first claim is mainly due to Kuranishi [32]; a proof adapted to take into account the
compatibility with the symplectic form can be found in [8, §6]. We prove the second claim. For
each x ∈ V , let gx be the Hermitian metric induced by ω and Φ(x). Consider the operator

Gx : k ×W 2,p+4(gx) → W 2,p(gx)

(ξ, φ) 7→ Scal(ωφ,Φ(x)) − Ŝ − hξ − ⟨∇gx
hξ,∇gx

φ⟩gx
.

By our assumption, G0(0, 0) = 0. To compute the linearisation of Gx at (0, 0) in the φ variable
we use the expression of the first variation of the Chern scalar curvature [1, Proposition 3.6] in
the direction of (ddcφ)1,1. We first observe that, when dc = −Φ(x) ◦ d, i.e. when we consider the
almost complex structure Φ(x), then

ddcφ = (ddcφ)1,1 + 1
2dφ ◦Nx,

where Nx is the Nijenhuis tensor of Φ(x). Then the linearisation of Gx is the operator1

DGx|(0,0)(φ) = − ∆2
gx

(φ) − ⟨Ricx, (ddcφ)1,1⟩gx

+ ∆gx

(
−⟨dφ, ϑx⟩gx

+ Trgx

(
1
2dφ ◦Nx

))
+ ⟨Ricx,

1
2dφ ◦Nx⟩gx

+ ⟨d(−∆gφ+ ⟨dφ, ϑx⟩gx
) + dTrgx

(
1
2dφ ◦Nx

)
, ϑx⟩gx

,

where ϑx is the torsion 1-form of the Chern connection of the metric gx and Ricx is the Chern-
Ricci form of gx. Moreover,

−∆2
gx

(φ) − ⟨Ricx, (ddcφ)1,1⟩gx
= −D∗

xDx(φ) + ⟨∇gx
Scal(ω,Φ(x)),∇gx

φ⟩gx
,

which is the linearisation of the scalar curvature when (ω,Φ(x)) is Kähler. Consider the Lich-
nerowicz operator

Lx(φ) = −D∗
xDx(φ).

The kernel of Lx is contained in ker D∗
0D0 = k, hence Lx is surjective.

Next, we show that its right inverse Qx satisfies
∥Qx∥ < C (2.6)

for some constant C. Let λ1 be the first eigenvalue of the Laplacian ∆0 with respect to the
Riemannian metric g0 = g(ω,Φ(0)); it satisfies

λ1 = inf
φ∈k⊥

⟨∆0(φ), φ⟩g0

∥φ∥2
g0

,

which is equivalent to the inequality
∥∂̄0φ∥2

L2(g0) ≥ λ1∥φ∥2
L2(g0), φ ∈ k⊥.

Then we can write
⟨∆g0

x (φ), φ⟩g0 = ∥∂̄x(φ)∥2
g0

+ ∥∂̄∗
x(φ)∥2

g0
,

where the ∂̄-operator is with respect to the complex structure Φ(x) but the adjoint operator is
with respect to the metric g0. Since ∂̄x is continuous in x it follows that

inf
φ∈k⊥

⟨∆g0
x (φ), φ⟩g0

∥φ∥2
g0

≥ λ1

2 .

1More precisely, this is computed by applying [1, Proposition 3.6] to the variation given by
(

−(ddcφ)1,1
)♯ω ,

where ♯ω denotes the operation of raising an index using ω.
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Since the metrics gx and g0 are uniformly equivalent when x is in a sufficiently small neighbour-
hood of the origin, we obtain the inequality

∥∂̄xφ∥2
L2(gx) ≥ C∥φ∥2

L2(gx),

with constant independent on x. This in turn gives a Poincaré type inequality for Dx with
constant independent on x:

∥Dxφ∥2
L2(gx) ≥ C∥∇gxφ∥2

L2(gx) = C∥∂̄xφ∥2
L2(gx) ≥ C∥φ∥2

L2(gx).

Let now φ+ ξ = Qx(ψ), where ξ is the L2(gx)-orthogonal projection of ψ on k. It follows that
∥Qxψ∥L2(gx) ≤ ∥φ∥L2(gx) + ∥ξ∥L2(gx) ≤ C∥ψ∥L2(gx) + ∥ψ∥L2(gx) ≤ (C + 1)∥ψ∥L2(gx).

Combining this with the Schauder estimate
∥φ∥W 2,p+4(gx) ≤ C

(
∥ψ∥L2(gx) + ∥ψ∥W 2,p(gx)

)
,

we obtain
∥Qxψ∥W 2,p(gx) ≤ C∥ψ∥W 2,p(gx),

where again the constants can be made independent on x. This proves the inequality (2.6).
Since

Scal(ω,Φ(x)) = Ŝ +O(|x|), ϑx = O(|x|), Nx = O(|x|2),

then Lx(φ) differs from the acual linearisation DGx|(ξ,0)(φ) by a term which is O(|x|), so the
same estimates (2.6) holds for the right inverse to DGx|(ξ,0), up to shrinking V . Therefore by
the implicit function theorem for each x we can find (ξ, φx), varying smoothly on x, such that
Gx(ξ, φx) = 0. □

We will refer to V as the Kuranishi space and to Φ as the Kuranishi map. Since we also allow
non-integrable almost complex structures, the slice V is an actual ball. Instead, in the original
work by Kuranishi, the set he constructs parametrises only integrable complex structures, hence
it is a complex analytic subspace V int of our V .

Remark 2.11. The above proof of Theorem 2.10 gives a different perturbation of the Kähler
structure than the one given by Székelyhidi [46] and Brönnle [3], to ensure that the scalar
curvature belongs to the Lie algebra of K. In particular, they fix the Kähler form ω and perturb
the Kuranishi map, which leads them to differentiate the function Scal(ω,Φ(x)) in the x-variable.
We instead perturb the Kähler form, thus the Kuranishi map remains holomorphic, and we
differentiate the scalar curvature in the direction of the Kähler potential.

Until this point, we have considered deformations of the complex structure of a fixed symplectic
manifold as (0, 1)-forms with values in the (1, 0)-tangent bundle. The point of view which we
now adopt following Dervan–Hallam [11], consists of considering deformations of the manifold M
as a smooth proper morphism U → V , called the universal family, such that U is diffeomorphic
to M ×V and the morphism is equivariant with respect to the action of K. The fibre over x ∈ V
is given by the almost complex manifold Ux = (M,ω,Φ(x)).

Let ωU be the pull-back to U of the 2-form ω of M ; ωU is symplectic when restricted to the
fibres and Kähler when restricted to the integrable fibres. The universal family U admits an
almost complex structure J such that J|x = Φ(x). The two-form ωU is closed and relatively
symplectic, and there exists a moment map τ : U → k with respect to ωU : even if ωU is only
relatively symplectic, one can still define the moment map by requiring that τ is equivariant and
that for each ξ ∈ k

d⟨τ, ξ⟩ = ωU (·, σξ),
where σξ is the infinitesimal vector field associated to ξ [11, Definition 3.3].
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The relatively symplectic form ωU induces the two-form on V

ΩWP = Ŝ

n+ 1

∫
U/V

ωn+1
U −

∫
U/V

ρU ∧ ωnU , (2.7)

where ρU is the curvature of the Hermitian connection induced by ωU on the top wedge power
of the vertical tangent bundle. It follows form Fujiki–Schumacher [22, §7] that ΩWP is a Kähler
metric on V , called the Weil–Petersson metric. In fact, the Weil-Petersson metric is the pull-back
via Φ of the Kähler metric on J induced by the Hermitian inner product

⟨α, β⟩J :=
∫
M

⟨α, β⟩gJ

ωn

n! , α, β ∈ TJJ ,

which is the Donaldson-Fujiki Kähler metric on J [17, 21] (see also [47, §6.1]). The following
interpretation of the scalar curvature as a moment map is due to Dervan–Hallam [11, Theorem
4.6].

Theorem 2.12. There exists a moment map µ for the K-action on V with respect to ΩWP ,
which, on the smooth locus of V int, is given as the projection

⟨µ(x), ξ⟩ =
∫

Ux

⟨τ, ξ⟩|x
(

Scal(ω,Φ(x)) − Ŝ
)
ωn, (2.8)

for ξ ∈ k.

There is a difference in sign with [11]: this is due to the fact that we take the opposite sign
for the infinitesimal action (2.3). Moreover, since the smooth locus of V int is dense in V int, and
the (Chern) scalar curvature is defined for all x ∈ V , the expression (2.8) actually holds on all
V int.

We now change (ω, Jx) to (ωφx , Jx) using Theorem 2.10 and, since φx vary smoothly with x,
we also change ωU to ωU,φ globally on U . Consider the function MωU ,φ : V → R defined as

MωU ,φ(x) =
∫ 1

0

∫
Ux

φx

(
Scal(ωtφx

,Φ(x)) − Ŝ
)
ωntφx

dt,

where (ωtφx
, Jx) = (ω+ 1

2 (ddc(tφx))1,1, Jx). This is a smooth function on V , and, when x ∈ V int,
MωU ,φ(x) coincides with (minus) the Mabuchi functional of φx on the corresponding fibre Ux.
On the integrable locus, where both ωU and ωU,φ are relatively Kähler, the expression (2.7)
defines the Weil-Petersson metrics ΩWP and ΩWP,φ. Then we have the following relation [43,
§7], [13, Proposition 4.2].

Proposition 2.13. On the smooth locus of V int,
ΩWP − ΩWP,φ = −i∂∂̄MωU ,φ.

Since the function MωU ,φ is a smooth function defined on all of V , we can use Proposition
2.13 to extend the Weil-Petersson metric obtained using ωU,φ. In fact, although the expression
(2.7) is only valid on the integrable locus, we define

ΩWP,φ = ΩWP + i∂∂̄MωU ,φ,

which is a Kähler metric defined on all of V (possibly after shrinking V ). Moreover, in the proof
of Theorem 2.10, we can restrict ourselves to work only with K-invariant potentials, so that
the K-equivariant implicit function theorem guarantees that φ is K-invariant; hence MωU,φ

is
K-invariant. Thus the moment map defined by Theorem 2.12 with respect to the Weil-Petersson
metric ΩWP,φ, which has the expression (2.8) on V int, extends continuously to a moment map
µφ on all V as

⟨µφ, ξ⟩ = ⟨µ, ξ⟩ + dcMωU,φ
(σξ).
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The extension is unique up to elements in the centre of k. This is the moment map we will work
with for the rest of this section and in Appendix A; in the following, we denote the moment map
µφ again by µ, making the change in the potential φ implicit.

Let us denote by
(1) kM the realisation of k as the space of holomorphy potentials with respect to (ω, J);
(2) kMφ the realisation of k as the space of holomorphy potentials with respect to (ω+i∂∂̄φ, J).

Moreover, for each ξ ∈ k, we denote the induced vector fields σU
ξ on U , σMξ on M and σVξ on

V . Combining Theorem 2.10 with Lemma 2.12, we obtain the following result, whose proof is
identical to the one of [42, Lemma 4.15], but we explicitly adapt it here to the context of cscK
metrics for sake of completeness.

Proposition 2.14. A point x ∈ V int is a zero of the moment map µ if and only if the scalar
curvature Scal(ω + i∂∂̄φx,Φ(x)) is constant.

Proof. Let prM : U → M be the projection. From the second item of Theorem 2.10, for every
x ∈ V int we can change ω by a Kähler potential φx with respect to the complex structure Φ(x),
in such a way that

Scal(ω + i∂∂̄φx,Φ(x)) − Ŝ ∈ kMφx
(2.9)

Since φx varies smoothly with x, it defines a function φ on U , so the condition (2.9) can be
rephrased as

Scal((ωU,φ, J)|Ux) − Ŝ ∈ pr∗
M (kMφx

).
Next, we define two immersions of k in C∞(M):

ι1,x(ξ) =(hU
ξ + σU

ξ (φ))|Ux

ι2,x(ξ) =hξ + σMξ (φx)
The two immersions are injective linear maps, hence their images are isomorphic to k. We can
rephrase the condition (2.9) as

Scal(ω + i∂∂̄φx,Φ(x)) − Ŝ ∈ ι2,x(k).
On the other hand, Theorem 2.12 implies that a point x ∈ V int is a zero of the moment map

µ if and only if the projection of the scalar curvature of (ω + i∂∂̄φx,Φ(x)) is L2(gx)-orthogonal
to ι1,x(k) in C∞(M). Denoting by Π1,x said orthogonal projection, Theorem 2.12 implies that
µ(x) = 0 if and only if

Π1,x(Scal(ω + i∂∂̄φx,Φ(x)) − Ŝ) = 0.
To conclude the proof, we must show that Π1,x restricted to ι2,x(k) is an isomorphism, from

which it follows that Π1,x(Scal(ω+i∂∂̄φx,Φ(x))−Ŝ) = 0 if and only if Scal(ω+i∂∂̄φx,Φ(x))−Ŝ =
0. To see this, we write

ι1,x(ξ) = ι2,x(ξ) + σVξ (φ)|Ux
.

Let {ξ1, . . . , ξd} be a basis of k such that the corresponding holomorphy potentials on M , denoted
{h1, . . . , hd}, are ω-orthonormal. By using this basis for k, the restriction of Π1,x to ι2,x(k) can
be written as a linear map from Rd to itself as

(λ1, . . . , λd) 7→ (c1, . . . , cd),
where

cj =
d∑
i=1

λi

(∫
M
ι2,x(ξi) · ι1,x(ξj)(ω + i∂∂̄φx)n

∥ι1,x(ξj)∥L2(ω+i∂∂̄φx)

)
.
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Since σVξ vanishes at x = 0 and φ = O(|x|), we can write

ι2,x(ξi) · ι1,x(ξj) = ι2,x(ξi) · ι2,x(ξj) +O(|x|2).

Similarly, the contribution to ι2,x(ξ) coming from φ is of order |x|, so

ι2,x(ξi) · ι1,x(ξj) = hi · hj +O(|x|).

Therefore we have ∫
M
ι2,x(ξi) · ι1,x(ξj)(ω + i∂∂̄φx)n

∥ι1,x(ξj)∥L2(ω+i∂∂̄φx)
=
∫
M

hi · hjωn +O(|x|).

Since the hi form an orthonormal basis with respect to ωn, we obtain that

cj =
d∑
i=1

δijλi +O(|x|),

which is a perturbation of the identity map of k. Thus for all sufficiently small x, Π1,x is also an
isomorphism. □

Let ωU be the relatively Hermitian metric on U after the change given by the potential φ
coming from Theorem 2.10. We next compute an expansion of the induced moment map µ
about the origin of V . By definition,

dx⟨µ, ξ⟩(v) = Ωx(v,Lσξ
x),

where we go back to intepreting x ∈ V as (0, 1)-form with values in the holomorphic tangent
bundle to make sense of the Lie derivative.

The origin of V is a fixed point of the action. By identifying T0V with H̃1, we consider on
H̃1 the linear symplectic form

Ω0(·, ·) = ΩJ0(d0Φ·,d0Φ·), (2.10)
and the linear action of K induced by the one on V . For any ξ ∈ k, consider the endomorphism
of H̃1

Aξ(t) = d0 (y 7→ exp(tξ) · y) ,
where by exp(tξ) we denote the 1-parameter subgroup of K defined by the element ξ ∈ k. It corre-
sponds via Φ to the flow of the Hamiltonian vector field σξ on M . The operator Aξ(t) is a unitary
operator, since it is linear and symplectic, because the group K acts by symplectomorphisms on
V . Let Aξ be the skew-hermitian endomorphism of (H̃1, J0)

Aξ := d
dt

∣∣∣∣
t=0

Aξ(t). (2.11)

Definition 2.15. We define a map ν : H̃1 → k by

⟨ν(v), ξ⟩ = 1
2Ω0(Aξv, v).

The map ν can be characterised as a moment map and is related to the scalar curvature (2.8)
as follows [28, §3]:

d2

dt2

∣∣∣∣
t=0

⟨µ(tv), f⟩ = ⟨ν(v), f⟩.
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3. Optimal symplectic connections

Let (Y,HY ) → (B,L) be a holomorphic submersion with a relatively ample line bundle HY →
Y . We make the following assumptions to restrict the class of admissible fibrations to those whose
fibres satisfy a stability property defined in terms of K-stability. More precisely we assume that:

(1) the fibres Yb are analytically K-semistable, which means by definition that they each
admit a degeneration to a cscK manifold Xb. We also assume that the degeneration is
compatible with the fibration structure in the following sense: there exists a holomorphic
map ϖ : (X ,H) → (B,L) × S, parametrised by a disk S, such that for s ̸= 0, the family
(Xs,Hs) → B is isomorphic to the original fibration πY : (Y,HY ) → B and the central
fibration at s = 0 is a family πX : (X,HX) → B whose fibres are cscK;

(2) the automorphism groups Aut0(Xb, Hb) of the fibres are all isomorphic.
The first hypothesis is a stability assumption. We will refer to the submersion X → B as the
relatively cscK degeneration of Y → B. The second hypothesis holds if and only if the spaces
H0(Xb, T

1,0Xb) are isomorphic as Lie algebras.
A relative version of Ehresmann’s theorem [41, Proposition 4.5] implies that X and Y are

diffeomorphic. Let M denote the underlying smooth manifold. Since the Chern classes are
integral classes we have that c1(HX) coincides with c1(HY ) as cohomology classes on M . Since
Y is a small deformation of X, the cohomology class c1(HX) is of type (1, 1) on Y , so ω is
a (1, 1)-form with respect to the complex structure of Y [27, §6.1]. By Moser’s theorem [4,
Theorem 7.2], we can modify the complex structure of Y by a small diffeomorphism so that ω
restricted to the fibres of πY is compatible with the restriction of the complex structure. Thus
we can assume that ω is relatively Kähler on Y .

Therefore we can view Y → B and X → B as the same relatively symplectic fibration
(M,ω) → B with two different integrable almost complex structures J and I where (ω, I) is
relatively cscK and (ω, J) is just relatively Kähler. The family X → B × S corresponds to a
family of complex structures {Js} on (M,ω) → B, such that for s ̸= 0, Js is isomorphic to J and
J0 is isomorphic to I. In particular, for each k ≫ 0 we have a family of Kähler metrics

(ωk := ω + kωB , Js),

which are all isomorphic for s ̸= 0.

3.1. Splitting of the function space. The relatively Kähler form ω induces a splitting of the
tangent space into a vertical and horizontal space

TX = V ⊕ Hω,

where the vertical tangent space is given by the tangent space at every fibre and the horizontal
tangent space is defined as the ω-orthogonal space to V. In the language of symplectic geometry,
ω is called a symplectic connection. This splitting extend to all tensor bundles of TX and T ∗X.

Under the relatively cscK assumption, we now explain how the function space C∞(X,R) splits
in a way that takes into account the fibration structure. We begin by considering the vertical
Lichnerowicz operator,

D∗
VDV : C∞(X,R) → C∞(X,R),

defined fibrewise as (D∗
VDVφ) |Xb

= D∗
bDb φ|Xb

. It is a real operator since the fibrewise metric
is cscK. By integrating a function φ ∈ C∞(X,R) over the fibres of π, we define a projection

C∞(X,R) −→ C∞(B,R)

φ 7−→
∫
X/B

φωm.
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Its kernel is given by the space C∞
0 (X,R) of functions that have fibrewise mean value zero. A

key step in the study of optimal symplectic connections is that we can further split this space as
follows.

Consider the real vector bundle E → B [14, §3.1], whose fibre over b ∈ B is the real finite-
dimensional vector space ker0(D∗

bDb) of holomorphy potentials on the fibre Xb with mean-value
zero with respect to ωb. It is well defined as a vector bundle since we assume that the complex
dimension of the space H0(Xb, T

1,0Xb) of holomorphic vector fields on Xb is independent of b
[25, §2.3]. The space of smooth global sections of E, denoted by C∞(E), is given by the kernel
over the fibrewise mean-value-zero functions of the vertical Lichnerowicz operator D∗

VDV . In [25,
Lemma 2.7], Hallam used the Cartan decomposition for the space h(Xb) of holomorphic vector
fields of the fibre to show that Eb can be also viewed as the vector space of all Kähler potentials
φb on Xb of mean-value zero for which ωb + i∂∂̄φb is still cscK.

We can split C∞
0 (X) as

C∞
0 (X,R) = C∞(E) ⊕ C∞(R),

where C∞(R) is the fibrewise L2-orthogonal complement with respect to the fibre metric ωb, i.e.
for all φ ∈ ker0D∗

bDb, ψ ∈ C∞(R)

⟨φ,ψ⟩b :=
∫
Xb

φψωmb = 0.

So we obtain
C∞(X,R) = C∞(B) ⊕ C∞(E) ⊕ C∞(R). (3.1)

We denote by pE : C∞(X) → C∞(E) the projection.
Definition 3.1. We denote by KE the space of functions φ ∈ C∞(X) such that ω+ i∂∂̄φ is still
a fibrewise cscK metric.

In particular, if we change the relatively cscK metric ω to ω + i∂∂̄φ with φ ∈ KE , the vector
bundles E(ω) and E(ω + i∂∂̄φ) are isomorphic.

3.2. Optimal symplectic connections. The definition of optimal symplectic connections in-
volves various curvature quantities and a description of the complex structure of Y as a defor-
mation of the one on X. To describe the deformations of the complex structure I, we consider
the space Jπ of almost complex structures compatible with ω and such that dπ ◦ J = JB ◦ dπ.
The tangent space at I to Jπ can be identified with

T 0,1
I Jπ =

{
α ∈ Ω0,1(V1,0)

∣∣ωF (α·, ·) + ωF (·, α·) = 0
}
,

where ωF is the vertical part of ω. Consider the map
PV : C∞

0 (X,R) −→ T 0,1
I Jπ

φ 7−→ ∂̄(gradωFφ)1,0,

which is the relative version of the map (2.3). Let H̃1
V be the kernel of the elliptic [41, §4.2]

operator
□V = PVP

∗
V + (∂̄∗∂̄)2,

where the adjoint is computed with respect to any Kähler metric on X which restricts to ωF
vertically. The space H̃1

V is the space of integrable first-order deformations of I. Let Kπ be the
group of biholomorphisms of I which restrict to an isometry on each fibre, with respect to the
fibrewise metric defined by (ω, I):

Kπ := Isom(πx, ω) = {f ∈ Diffeo(X) | f∗ω = ω and πX ◦ f = πX}.

The group Kπ acts on H̃1
V by pull-back. The following theorem [41, §4.2] is a fibrewise version

of Theorem 2.10.
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Theorem 3.2. There exists a neighborhood of the origin Vπ ⊂ H̃1
V and a Kπ-equivariant holo-

morphic map
Φ : Vπ → Jπ (3.2)

such that Φ(0) = I and
(1) If v1, v2 ∈ Vπ and v1 ∈ KC

b · v2, and if Φ(v1) is integrable, then Φ(v1) and Φ(v2) are
isomorphic;

(2) For any J ∈ Jπ integrable close to I, there exists J ′ in the image of Φ such that J ′ is
isomorphic to J ;

(3) For each x ∈ Vπ there is a relatively Kähler metric ωx such that
ScalV (ωx,Φ(x)) ∈ C∞(E, I).

We now describe the curvature quantities determined by ω involved in the definition of optimal
symplectic connections:

(1) the symplectic curvature is a two-form on B with values in the fibrewise Hamiltonian
vector fields defined for v1, v2 ∈ X(B) as

FH(u1, u2) = [u♯1, u
♯
2]vert,

where u♯j denotes the horizontal lift. Let γ be the map which associates to a fibrewise
Hamiltonian vector field its fibrewise Hamiltonian function with fibrewise mean value
zero. Thus we consider γ∗(FH), which is a two-form on B with values in C∞

0 (Y,R), and
we pull it back to Y ;

(2) the curvature ρ of the Hermitian connection induced by (ω, I) on the top wedge power∧m V. We will primarily consider its purely horizontal part ρH;
(3) the curvature of the deformation family, given by a global section ν of the vector bundle

E → B of relatively holomorphy potentials of X → B defined as
ν(b) = νb(vb), (3.3)

where νb is the map of Definition 2.15. Given x ∈ Vπ, v ∈ H̃1
V , we will write νx(v) when

we want to underline the dependence of the map ν on the complex structure Φ(x) and
the deformation v.

Definition 3.3. [41, §3.3] A relatively Kähler metric ω on Y → B is called an optimal symplectic
connection if

pE (∆V(ΛωB
γ∗(FH)) + ΛωB

ρH) + λ

2 ν = 0, (3.4)
for a positive number λ. In the following, we will use the notation Θ(ω, J) = ∆V(ΛωB

γ∗(FH)) +
ΛωB

ρH.
Equation (3.4) is a second-order elliptic equation on the vector bundle E → B [41, §5.3]. It

arises as the subleading order term in the expansion of the scalar curvature, as shown by the
following proposition [41, Proposition 5.4].
Proposition 3.4. The scalar curvature of (ωk, Js) admits an expansion

Scal(ωk, Js) = ScalV(ω, Js) + k−1 (Scal(ωB) + ∆V(ΛωB
ωH) + ΛωB

ρH) +O
(
k−2) .

The vertical scalar curvature admits an expansion

ScalV(ω, Js) = µπ(xs) = Ŝb + s2

2 νπ(v) +O
(
s3) .

Therefore, by choosing s2 = λk−1 for λ > 0 we can combine them to give the single expansion

Scal(ωk, Js) = Ŝb + k−1
(
ψB + pE(∆V(ΛωB

ωH) + ΛωB
ρH) + λ

2 ν(v) + ψR

)
+O

(
k−3/2

)
.
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Remark 3.5. The equation with ν = 0 is the condition for an optimal symplectic connection in
the sense of [14], where all the fibres are required to be cscK, i.e. when X = Y .

The linearisation of the equation at a solution is given by the operator [41, §5.3]

L̂ = R∗R + A∗A

on C∞(E), where
R(φE) = ∂̄B∇1,0

V φE (3.5)
and

A(φE) = d0Φ (AφE
v) . (3.6)

The adjoint is computed with respect to ωF + ωB . Here ∇1,0
V φE is a section of the holomorphic

tangent bundle; the vertical part of ∂̄∇1,0
V φE vanishes since φE ∈ C∞(E) and the horizontal

part is denoted by the expression (3.5). The operator (3.5) can be described as follows [14, §4.3]:
let D∗

kDk be the Lichnerowicz operator with respect to the Kähler metric ωk. It admits a power
series expansion in negative powers of k:

D∗
kDk = L0 + k−1L1 +O

(
k−2) ,

where L0 is the vertical Lichnerowicz operator D∗
VDV . Then for φ,ψ fibrewise holomorphy

potentials ∫
X

φL1(ψ)ωm ∧ ωnB =
∫
X

⟨Rφ,Rψ⟩ωF +ωB
ωm ∧ ωnB .

This means that the operator R∗R can actually be seen as pE◦L1 restricted to C∞
E (X). The kernel

of R, thus of R∗R, consists of fibrewise holomorphy potentials which are global holomorphy
potentials on X with respect to ωk, and it is independent of k. The operator (3.6) is described
as

⟨dvν(L∇Vφv), ψ⟩ =
∫
X

⟨d0Φ (Aφv) ,d0Φ (Aψv)⟩ωF
ωmF ∧ ωnB , (3.7)

where φ,ψ ∈ C∞(E). A function ψ ∈ C∞(E) is in the kernel of A if and only if ψ is a fibrewise
holomorphy potential with respect to all Js, i.e. ψ ∈ C∞(E, Js). Thus the kernel of L̂ consists
of those functions ψ ∈ C∞(E, J0) such that ∂̄s(∇1,0

s,Vψ) = 0 for all s [41, Proposition 5.8].

3.3. Automorphisms of the optimal symplectic connection equation. Let (X,HX) → B
be a relatively cscK fibration. Consider the complex group Aut(X,HX) of automorphisms of X
lifting to HX . Its Lie algebra is given by the holomorphic vector fields which vanish somewhere,
and we denote it by h0. Recall from §3.2 the group of relative Hamiltonian isometries Kπ.

Definition 3.6. The group of relative automorphisms is
Aut(πX) = {f ∈ Aut(X,HX) | πX ◦ f = πX}.

We denote by hπ the Lie algebra of Aut(πX) and kπ the Lie algebra of Kπ. An element in hπ
is a holomorphic vector field which vanishes somewhere and whose flow lies in Aut(πX), while
an element of kπ is a holomorphic vector field which corresponds to a Killing vector field under
the identification of the real tangent bundle TRX with the holomorphic tangent bundle T 1,0X.
The following fibration version of Theorem 2.1 is a result of Dervan and Sektnan [14, 16].

Theorem 3.7. (1) Let ω be an optimal symplectic connection on the relatively cscK fibration
X → B and let f ∈ Aut(πX). Then f∗ω is an optimal symplectic connection.

(2) Let ω be an optimal symplectic connection on X → B. Then

hπ = kπ ⊕ Ikπ.



MOMENT MAPS AND STABILITY OF HOLOMORPHIC SUBMERSIONS 18

In particular, the theorem implies that KC
π is contained in Aut(π) with equality holding if

(ω, I) is an optimal symplectic connection.
We next prove an analogous result for the optimal symplectic connection equation (3.4) on

a fibration with K-semistable fibres. Let (Y,HY ) → (B,L) be such a fibration admitting a
degeneration to (X,HX) → (B,L) and let Vπ be the Kuranishi space of πX . Let (X ,H) →
(B,L) × S be the degeneration family. The family of complex structures {Js} with J0 = I
corresponds to a family {ys} of points in Vπ such that x0 is the origin of Vπ. Let v be the
tangent vector at the origin of Vπ that represents the degeneration family, i.e.

v = ∂s|s=0ys.

Consider the stabiliser of v for the action of Kπ,
Kπ,v := {f ∈ Kπ | f∗v = v},

and
Gπ,v := (KC

π )v. (3.8)
For f ∈ Gπ,v

∂s|s=0ys = v = f∗v = f∗ (∂s|s=0ys) = ∂s|s=0 (f∗ys) .
Therefore

∂s|s=0(ys − f∗ys) = 0,
so v = f∗v. So the elements of Gπ,v are automorphisms of the complex structure I of the
relatively cscK degeneration X → B that preserve the projection πX and are also automorphisms
of the complex structures Js. Moreover, the pull-back of the optimal symplectic connection
operator via f ∈ Gπ,v satisfies

f∗
(

1
2ν(v) + pE(Θ(ω, I))

)
= 1

2ν(v) + pE(Θ(f∗ω, I)).

Indeed, since ν is KC
π -equivariant,

f∗ν(v) = ν(f∗v) = ν(v),
and by Theorem 3.7,

f∗(pE(Θ(ω, I))) = pE(Θ(f∗ω, I)).
We have proven the following.
Lemma 3.8. Let ω be an optimal symplectic connection and f ∈ Gπ,v. Then f∗ω is an optimal
symplectic connection. Moreover, if φ is a fibrewise I-holomorphy potential whose flow of the
gradient lies in Gπ,v, φ is in the kernel of the linearisation L̂.

Let gπ,v be the Lie algebra of Gπ,v, consisting on those holomorphic vector fields whose flow lies
in KC

π and which preserve v. In particular, preserving v means that they extend to holomorphic
vector fields with respect to all Js. Let kπ,v be the Lie algebra of Kπ,v, of Killing holomorphic
vector fields whose flow preserves v. We can then prove a version of Theorem 2.1 for our setting.
Theorem 3.9. Let ω be an optimal symplectic connection. Then

gπ,v = kπ,v ⊕ Ikπ,v.

In particular Kπ,v is a reductive subgroup of Gπ,v.

Proof. As recalled in §3.2, the kernel L̂ of the linearisation of the optimal symplectic connection
equation consists of fibrewise I-holomorphy potentials which are also global Js-holomorphy po-
tentials for all s. From the discussion above, this is in bijection with the Lie algebra gπ,v, and
kπ,v corresponds to the real vector fields in gπ,v. Since L̂ is a real operator, L̂(u+ iv) = 0 if and
only if L̂(u) = 0 and L̂(v) = 0. □
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3.4. Stability of fibrations. We recall the notion of fibration degeneration and of fibration
stability [15, 25, 26]. We then give a notion of stability for a fibration in terms of a numerical
invariant associated with fibration degenerations, derived from the adiabatic expansion of the
Donaldson-Futaki invariant on the total space.

Definition 3.10. A fibration degeneration for a fibration (Y,HY ) → (B,L) is the data of:
(1) a variety Y together with a flat projective morphism Y → B × C with connected fibres

and equivariant with respect to a C∗-action on C;
(2) A C∗-equivariant line bundle H → Y that is relatively ample over B × C;
(3) An isomorphism (Y1,H1) ≃ (Y,Hr) as fibrations over B.

A fibration degeneration is called trivial if there exists a C∗-equivariant isomorphism Y ≃ Y ×C
with respect to the trivial C∗-action. A fibration degeneration is called a product fibration
degeneration if there exists a C∗-equivariant isomorphism Y ≃ Y × C where the action is not
necessarily trivial.

A fibration degeneration is essentially a test configuration that preserves the fibration struc-
ture. We next associate a fibration degeneration with a numerical invariant. For each k ≫ 0 the
map (Y,H + kL) → C obtained projecting B ×C to the second factor is a test configuration for
Y with respect to the polarisation HY + kL. Thus we expand the Donaldson-Futaki invariant as
follows:

DF (Yk,H + kL) = W0 + k−1W1 +O
(
k−2) . (3.9)

Definition 3.11. We say that the fibration (Y,HY ) → (B,L) is
(1) semistable if W0 ≥ 0 and when W0 = 0 then W1 ≥ 0 for all fibration degenerations

(Y,H) → B × C;
(2) stable if it is semistable and when W0 = 0 and W1 = 0, then there exists an open

U ⊆ B whose complement has codimension at least 2 such that the fibration degeneration
normalises to a trivial fibration degeneration over U ;

(3) polystable if it is semistable and when W0 = 0 and W1 = 0, then there exists an open
U ⊆ B whose complement has codimension at least 2 such that the fibration degeneration
normalises to a product fibration degeneration over U .

4. Stability and optimal symplectic connections

Let Y → B be a fibration with K-semistable fibres and let X → B × S be a degeneration
family to a relatively cscK fibration X → B, with relatively cscK metric (ω, I). The volume of
the Kähler form ωk admits the following expansion in powers of k:

ωn+m
k = kn

(
n+m

n

)
ωm ∧ ωnB + kn−1

(
n+m

n− 1

)
ωm+1 ∧ ωn−1

B +O
(
kn−2) . (4.1)

Let Vπ be the relative Kuranishi space defined in Theorem 3.2 and let y0 be the point of
Vπ which corresponds to J via the Kuranishi map Φ 3.2 and y0

s be the degeneration family. In
particular, the origin of Vπ corresponds to the relatively cscK fibration X → B. Let

v = ∂s|s=0y
0
s .

The following result [39, Lemma 3.7] describes the subspace of Vπ which parametrises relatively
K-semistable fibrations with smooth fibres admitting a degeneration to a relatively cscK fibration.

Lemma 4.1. There exists a locally closed subvariety V +
π of the relative Kuranishi space Vπ

such that, for any y′ ∈ V +
π the fibration Y ′ = (M,ω,Φ(y′)) → B degenerates to a fibration

X ′ = (M,ω, I ′) → B satisfying the following properties:
(1) (ω, I ′) is relatively cscK;
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(2) the groups Aut(X ′
b, H

′
b) are isomorphic for all b ∈ B.

4.1. A finite-dimensional moment map on fibrations. In this section, we prove that opti-
mal symplectic connections can be described as zeroes of a moment map on V +

π : the strategy is
the same as that illustrated in §2.3 for the cscK equation. We begin by describing a symplectic
form on V +

π , defined as follows: given two tangent vectors α1, α2 at a point y ∈ V +
π ⊂ Vπ, the

differential of the Kuranishi map 3.2 is an injective map
dyΦ : TyVπ ↪→ H̃1

V

inside a space of (0, 1)-forms with values in the (1, 0)-vertical tangent bundle of X → B. Then
the Hermitian metric ωF + ωB induces an Hermitian metric on TyV

+
π whose imaginary part is

given by:
⟨α1, α2⟩ωF +ωB

=
∫
X

ΛωF +ωB
TrωF

(α1α2)ωm ∧ ωnB . (4.2)

Proposition 4.2 ([39, Theorem 4.7]). The 2-form
Ωy(α1, α2) = ⟨Jyα1, α2⟩ωF +ωB

,

where Jy = Φ(y), is a Weil–Petersson type Kähler form on V +
π .

From Lemma 4.1, to any point y ∈ V +
π we can associate a pair (xy, vy) ∈ TVπ where Φ(xy) is

relatively cscK. We can then write the optimal symplectic connection equation (3.4) as

pE(xy) (Θ(ω,Φ(xy))) + 1
2νxy

(vy) = 0. (4.3)

Lemma 4.3. The group Kπ,v acts on V +
π by pull-back and the action preserves V +

π .

Proof. The claim follows from the fact that the group Kπ,v is a group of biholomorphisms of the
complex structure I. Consider a point y ∈ V +

π and a function f ∈ Kπ,v. Then the relatively
cscK degeneration xy is preserved by f , i.e. f∗Φ(xy) is relatively cscK. Therefore the fibration
associated with f∗y degenerates to the relatively cscK fibration associated with f∗xy, so f∗y is
in V +

π . □

For ξ ∈ kπ,v, let σξ be the corresponding fibrewise holomorphic vector field and hξ be its
fibrewise holomorphy potential with respect to the relative Kähler metric (ω, I). If we perturb
ω to ω + i∂∂̄φ, for some Kähler potential φ ∈ KE(I), then [47, Lemma 4,10] the function

hξ,φ = hξ + σξ(φ)
is a fibrewise holomorphy potential for the same fibrewise holomorphic vector field with respect
to the relative metric (ω + i∂∂̄φ, I). The following result, analogous to the second part of the
Kuranishi Theorem 2.10, allows us to perturbs the relatively Kähler metric in such a way that
the optimal symplectic operator has values in the Lie algebra of Kπ,v.

Lemma 4.4. Assume that Y admits an optimal symplectic connection. Then for each y ∈ V +
π

there exists a Kähler potential φ for the complex structure Φ(xy) and ξ ∈ kπ,v, also depending on
y, such that

pE(xy)
(
Θ(ω + i∂∂̄φ,Φ(xy))

)
+ 1

2νxy
(dyΦ(vy)) = hξ,φ.

Proof. For each y ∈ V +
π let gy be the Riemannian metric induced by the volume form ωm ∧ ωnB

with respect to the complex structure Φ(xy). Consider the operator
Fy : K2,p+2

E (gy) × kπ,v → W 2,p(gy)

(φ, ξ) 7→ pE(φ,xy)
(
Θ(ω + i∂∂̄φ,Φ(xy))

)
+ λ

2 νφ,xy
(vy) − hξ,φ.
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In this expression, E(φ, xy) is the vector bundle of fibre holomorphy potentials with respect to the
Kähler structure (ω + i∂∂̄φ,Φ(xy)) and K2,p+2

E (gy) is the W 2,p+2(gy)-completion of KE(Φ(xy)).
As recalled in §3.2, the differential of Fy at (ξ, 0) with respect to φ is [41, §5.3]

Ly(ψ) = −1
2R∗

yRy(ψ) − A∗
yAy(ψ) − hξ − σξ(ψ),

where Ry and Ay are the operators (3.5) and (3.6), computed with respect to the complex
structure Φ(xy). As an operator on the vector bundle E(xy) → B of fibrewise Φ(xy)-holomorphy
potentials, the kernel of Ly is contained in kπ,v, so it is surjective.

We next prove that Ly has a bounded right inverse. As a differential operator on the vector
bundle E(xy), the term −A∗

yAy(ψ) − hξ − σξ(ψ) is linear [41, §5.3], so Ly has a bounded right
inverse if and only if R∗

yRy does. As in the proof of Theorem 2.10, the bound follows from a
Poincaré type inequality and Schauder estimates. Recall that by definition

Ry(ψ) = ∂̄B∇1,0
V,yψ.

The vertical-horizontal splitting of TX induced by ω gives a splitting of the operator

d = dH + dV ,

and analogously for the holomorphic operators ∂0, ∂̄0 with respect to the complex structure Φ(0).
These splittings define two Laplace operators on X [36, §2]:

∆H,0(ψ) = ∂̄∗
B ∂̄Bψ,

∆V,0(ψ) = ∂̄∗
V ∂̄Vψ,

where the adjoint is defined with respect to g0, and similarly the Laplace operator ∆V,y(ψ) =
∂̄∗

V,y∂̄V,y where the adjoint is again defined with respect to g0 but the vertical ∂̄-operator is the
one induced by the complex structure Φ(xy). Arguing as in the proof of Theorem 2.10, we obtain
the Poincaré inequality for ∂̄B ,

∥∂̄Bψ∥2
L2(gy) ≥ C∥ψ∥2

L2(gy), ψ ∈ k⊥
π,v ∩ C∞(E(xy)),

where C is independent on y, for y sufficiently close to the origin. It remains to give a Poincaré
type inequality for ∆V,y. This again follows as in the proof of Theorem 2.10: in fact, on each
fibre the operator ∆V,y is the Laplacian on the cscK fibre of the fibration corresponding to Φ(xy),
so the inequality

∥∇1,0
V (ψ)∥L2(gy) ≥ C∥ψ∥L2(gy)

holds at any given fibre. Hence it holds in a neighbourhood of a given fibre with the constant
independent on the fibre. By compactness of the total space, it holds globally with a uniform
constant. The conclusion then follows applying the Schauder estimates as in Theorem 2.10: the
right inverse Qy of Ly satisfies

∥Qy∥ ≤ C.

From the implicit function theorem, locally around (0, y0) we can then solve Fy(φy, ξ) = 0,
and moreover φy varies smoothly with y. □

Next we wish to prove an analogue of Theorem 2.12 to show that the optimal symplecic
connection operator is a moment map. Let U → B × V +

π be the universal family of fibrations
such that U0 = Y → B admits an optimal symplectic connection. The fibres of U → V +

π are
diffeomorphic to M , where M is the underlying smooth manifold to the total space Y . Let ωU,k
be a relatively Kähler metric on U obtained pulling back the metric ωk from Y . Then

ωU,k = ωU + kωB ,
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where ωU is the pullback of ω from Y . The group Kπ,v acts on U so that the family U → B×V +
π

is Kπ,v-equivariant, where the action is trivial on B.
Since the Kähler potentials φy obtained in Lemma 4.4 vary smoothly with y, they define a

global potential φ for ωU that makes the optimal symplectic connection operator lie in the Lie
algebra kMπ,v, i.e. for each y ∈ V +

π ,

pE(xy) (Θ(ωy,Φ(xy))) + 1
2νxy

∈ (kMπ,v)y.

Let τ be a moment map on U for the action of Kπ,v with respect to ωU . As a consequence
of Theorem 2.12, we obtain the following interpretation of the optimal symplectic connection
operator as a moment map.

Theorem 4.5. The map ϑ defined as

⟨ϑ(y), v⟩ =
∫

Uy

⟨τ, v⟩|y
(
pE(xy) (Θ(ωy,Φ(xy))) + 1

2νxy

)
ωmy ∧ ωnB (4.4)

is a moment map on V +
π with respect of the Weil–Petersson metric Ω.

Proof. We write an expansion of the expression (2.8), in powers of k. First observe that a moment
map on U with respect to the relatively Kähler metric ωU,k is given by

τk = τ + kτB

In fact, this follows from expanding in k the expression

d⟨τk, v⟩ = ωU,k(·, v).

From Theorem 2.12, we obtain a moment map µk defined as

⟨µk(y), v⟩ =
∫

Uy

⟨τk, v⟩|y
(
S(ωU,k|y,Φ(x)) − Ŝk

)
ωn+m
k .

Since v is a vertical deformation, ωB(·, v) = 0, so we are left with the expansion of

⟨µk(y), v⟩ =
∫

Uy

⟨τ, v⟩|y
(
S(ωU,k|y,Φ(x)) − Ŝk

)
ωn+m
k .

Using the expansion of the volume (4.1) and Proposition 3.4, we obtain that the leading order
term is precisely the expression (4.4). □

We finish this section by observing that zeroes of the moment map θ correspond to optimal
symplectic connections. In fact, Theorem 4.5 implies y is a zero of the moment map θ if and only
if the optimal symplectic connection operator is orthogonal to the Lie algebra kπ,v. Arguing as
in Proposition 2.14, we obtain the following.

Proposition 4.6. A point y ∈ V +
π is a zero of the moment map ϑ if and only if

pE(xy) (Θ(ωy,Φ(xy))) + 1
2νxy

= 0.

The upshot is that we can re-define ωU to take into account the change in the Kähler potential
φ and that the zeroes of the moment map ϑ obtained from ωU are optimal symplectic connections.
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4.2. Optimal symplectic connections on stable deformations. In this section, we use the
moment map property to prove a finite-dimensional stability result analogue to Theorem 1.2: we
prove that a stable deformation of a fibration with an optimal symplectic connection still admits
an optimal symplectic connection.

As observed in §2.3, Theorem 4.5 only works on the subspace of V +
π that parametrises inte-

grable complex structures. However, we can extend the Kähler metric (4.2) on V +
π to a Kähler

metric on the whole Vπ, so the optimal symplectic connection moment map θ extends in a unique
way to Vπ. We do this because Vπ is smooth, so we can apply to it the theory of the moment
map flow. We will prove at the end that the zero of the moment map we find is in fact in V +

π

and it corresponds to an integrable complex structure.

Theorem 4.7. Let Yw → B be a deformation of Y → B, with w ∈ V +
π . Assume that Y → B

admits an optimal symplectic connection and that Yw → B is polystable. Then there is a w1 ∈ V +
π

in the KC
π,v-orbit of w such that ϑ(w1) = 0.

Proof. Assume that w has discrete stabiliser. From Proposition 2.5, the moment map flow of ϑ
starting at w converges to a point w∞, which belongs to Vπ by Proposition 2.4. Assume that
w∞ /∈ KC

π,v · w. By Proposition 2.6 we can find ξ ̸= 0 in kπ,v and w̃ ∈ Vπ such that
⟨θ(w̃), ξ⟩ ≥ 0. (4.5)

Let f be the fibrewise holomorphy potential induced by ξ and consider the expansion

⟨Scal(ωk, w̃) − Ŝ, f⟩k =
∫
M

(Scal(ωk, w̃) − Ŝ)fωn+m
k .

Expanding both the scalar curvature and the Kähler metric in powers of k by plugging in the
expansion of the volume (4.1) and the expansion of the scalar curvature from Proposition 3.4 we
obtain that the leading order term is, up to a constant,

kn
∫
M

(Ŝb − Ŝ)fωm ∧ ωnB

and the sub-leading order term is, up to a constant,

kn−1
∫
M

θ(w̃)fωm ∧ ωnB + kn−1
∫
M

(Ŝb − Ŝ)fωm+1 ∧ ωn−1
B . (4.6)

We know from Lemma 2.12 that the scalar curvature is a moment map for the action of Kπ,v (in
fact, for a larger group of biholomorphic isometries that contains Kπ,v). It follows from Theoerm
2.8 that the pairing

⟨Scal(ωk, w̃) − Ŝ, f⟩k
is, up to a constant, equal to the opposite of the Donaldson-Futaki invariant of the test config-
uration for Yw generated by the infinitesimal vector field σf with central fibre Y

w̃
. Since ξ is in

kπ,v the induced test configuration is in fact a fibration degeneration. Comparing the expression
(4.6) with the expansion of the Donaldson-Futaki invariant (3.9) we see that the quantity

⟨θ(w̃), ξ⟩ =
∫
M

θ(w∞)fωm ∧ ωnB

is, up to a constant, equal to the opposite of subleading order term W1, which is negative since
the fibration Yw → B is polystable. More precisely, we have shown that if Yw → B is polystable,
then

⟨θ(w̃), ξ⟩ ≤ 0
with equality holding if and only if Yw̃ → B is isomorphic to Yw → B. Therefore, the inequality
(4.5) forces ⟨θ(w̃), ξ⟩ = 0, and from Proposition 2.6 we obtain that θ(w̃) = 0.
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If w has non-discrete stabiliser, we project orthogonally to a maximal torus in the stabiliser as
explained in §2.1. Let kT⊥ be the Lie algebra (2.2) defined from kπ,v, and KT⊥ the corresponding
group. Arguing as before, we obtain w̃ ∈ KT⊥ · w such that ϑT⊥(w̃) = 0. From [47, Theorem
5.25], it follows that there exists w1 ∈ KC

T⊥ · w̃ such that w1 is a critical point for ∥θ∥2. This
implies [47, Lemma 5.23] that θ(w1) ∈ (kπ,v)w1

. Since w̃ is in the same orbit as w, so is w1,
so the function θ(w1) also belongs to the Lie algebra (kπ,v)w of the stabiliser of w. Therefore
stability implies that

⟨θ(w1), θ(w1)⟩ = 0,
so θ(w1) = 0. Since V +

π is closed under the action of the group, the point w1 is in fact in V +
π . □

Appendix A. Stability of deformations of cscK manifolds

We use the moment map flow technique to prove a result analogous to Theorem 4.7, in the case
of a Kähler manifold (M,ω, J) with constant scalar curvature: K-polystability of a deformation
of M implies the existence a cscK metric. We provide a proof that uses the Dervan–Hallam
theory and the moment map flow, analogous to that of Theorem 4.7.

Theorem A.1. Let (X,L) be a cscK manifold and (Y,L′) be a K-polystable deformation of X.
Then Y admits a cscK metric in c1(L′).

Proof. Let us write X = (M,ω, J), where (ω, J) is the cscK metric. Let V be the Kuranishi space
and Φ the Kuranishi map, as in §2.3, so X corresponds to the origin of V and Y corresponds
to a point x ∈ V . In particular, X and Y are diffeomorphic and, since the first Chern classes
are integral classes, we can assume that c1(L) = c1(L′). Let U → V be the universal family
parametrising the deformations, let ωU the relatively Kähler metric on U obtained after applying
Theorem 2.10, and let L be the natural relatively ample line bundle on U .

Recall that from Theorem 2.12 we have a moment map µ on V with respect to the action
of the group K of Hamiltonian isometries, and from Proposition 2.14 the zeroes of µ are cscK
metrics.

Assume that x has discrete stabiliser. We wish to apply the moment map flow
d
dtxt = Jσ(µ(xt))

defined in Definition 2.3, with starting point x ∈ V , and show that there exists a zero of µ in
the KC-orbit of x. From Proposition 2.4 we know that the flow has a limit x∞ inside V . From
Proposition 2.6, either µ(x∞) = 0 and x∞ ∈ KC · x, or x∞ /∈ KC · x. In the latter case, let
0 ̸= ξ ∈ k and x̃ ∈ V be given by Proposition 2.6 such that

lim
t→∞

exp(−itξ) · x = x̃

and
⟨µ(x̃), ξ⟩ ≥ 0. (A.1)

The Φ(x̃)-holomorphic vector field induced by ξ defines a test configuration (Y,L′) for (Y,L′),
represented on V by the closure of the orbit of x for the action of the one-parameter subgroup
of KC induced by ξ. From Theorem 2.12,

⟨µ(x̃), ξ⟩ =
∫

Ux̃

(Scal(ωx̃,Φ(x̃)) − Ŝ)fωnx̃ ,

where f is the holomorphy potential with respect to Φ(x̃) induced by ξ. In particular ⟨µ(x̃), ξ⟩
is equal to the Futaki invariant of the vector field σξ induced by ξ. By Theorem 2.8 this is, up
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to a constant, equal to the opposite of the Donaldson-Futaki invariant of the test configuration
(Y,L′). K-polystability of Y then implies that

⟨µ(x̃), ξ⟩ ≤ 0, (A.2)
with equality holding if and only if the test configuration is a product. From (A.1) and (A.2) we
see that ⟨µ(x̃), ξ⟩ = 0. Proposition 2.6 gives x̃ = x∞ and µ(x∞) = 0, and from stability the test
configuration induced by ξ is in fact a product test configuration, which in particular implies
that (Ux∞ ,Lx∞) is isomorphic to (Y,L′). Since KC is a group of biholomorphisms and Φ(x) is
an integrable complex structure, so is Φ(x∞). Hence, from Proposition 2.14, the corresponding
Kähler metric on (Y,L′) is cscK.

If the stabiliser of x is not discrete, we can project the moment map orthogonally to the
stabiliser, as explained in §2.1. Then arguing as before, we find a zero x∞ of µT⊥ . From [47,
Theorem 5.25], it follows that there exists x1 ∈ KC

T⊥ · x∞ such that x1 is a critical point for
∥µ∥2. This implies [47, Lemma 5.23] that µ(x1) ∈ kx1 . Since (Ux∞ ,Lx∞) is isomorphic to (Y,L′),
so is (Ux1 ,Lx1), so the function µ(x1) also belongs to the Lie algebra kx of the stabiliser of x.
Therefore stability implies that

⟨µ(x1), µ(x1)⟩ = 0,
so µ(x1) = 0. □

Remark A.2. Our proof of Theorem A.1 fixes a mistake in Székelyidhi’s original proof [46,
Proposition 8]. In fact, Székelyidhi’s argument relies on a lower bound on the norm of the
differential of µ along the infinitesimal vector field that is uniform in a ball around the origin;
this uniform bound cannot exist, because the differential of µ vanishes at the fixed points, which
form a linear subspace. So [46, Proposition 9] cannot be applied. A similar issue is present also
in [50, Proposition 3.3.2], where the argument would need a uniform bound on the Hessian of
the norm-squared of ν which cannot hold for the same reason, and in [40, Theorem 1.27]. A
related mistake can be found in [3, §2.4], where the techniques require the Kähler property but
the finite-dimensional reduction gives a moment map with respect to a symplectic form that is
not Kähler.

While our approach applies generally to perturbation problems, a workaround to this issue
was developed in certain cases by Inoue in the case of Kähler-Ricci solitons [29, §4.1.2] and by
Fan in the case of Higgs bundles [20] using global techniques specific to those problems.

The same argument can be applied to the finite-dimensional setting of GIT stability to show
the analogous result that the orbit of a polystable deformation of a zero of the moment map
contains a zero of the moment map. This result is used in [46] to prove Theorem A.1; although
our proof of Theorem A.1 does not rely on finite-dimensional GIT, we report a proof of the
finite-dimensional result that follows our strategy, as it is of independent interest.

Theorem A.3. Let v ∈ V ⊂ T0V be a GIT-polystable point for the linearised G-action on T0V .
Then there is a point x0 ∈ V in the same KC-orbit as v such that µ(x0) = 0.

Remark A.4. In the case of GIT stability we can give a different proof of Proposition 2.4 to
show the stability of the flow. Let us compactify V to X, where we can think of X as a projective
space. Let S be the set of limit points of the moment map flow in V . Then

S = µ−1(0) ∩ V ⊂ µ−1(0),
where the inclusion is open. Let µ−1(0)/K be the symplectic quotient. The topological quotient

µ−1(0) → µ−1(0)/K
maps the open set S to an open set [S] in the quotient, since S is K-invariant. From the Kempf–
Ness theorem, since the symplectic quotient is isomorphic to the GIT quotient Xss �G, the set
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[S] is open in the GIT quotient, so its preimage is open in X. Now, the preimage of an open set
via the GIT quotient is closed under taking the limit of the moment map flow. Therefore, since
V ∩Xss is also open and the preimage of [S] under the GIT quotient is contained in V ∩Xss, we
find an open set S′ inside V of semistable points such that the limit of the flow starting inside
S′ are in S′ (although the flow might leave S′ in finite time).

Proof of Theorem A.3. As before, without loss of generality, we can assume that v has discrete
stabiliser, otherwise we can project the moment map orthogonally to the stabiliser, as explained
in §2.1. From Remark A.4 we know that the flow of µ starting at v has a limit x∞ inside V .
Assume that x∞ /∈ KC · v. Let ξ ∈ k and ṽ ∈ V be given by Proposition 2.6 such that

lim
t→∞

exp(−itξ) · v = ṽ

and
⟨µ(ṽ), ξ⟩ ≥ 0.

Consider the path xt = tṽ in V ; it is well defined because V is a linear space, so ṽ ∈ T0V can be
viewed as an element of V itself. Hence we have the following expansion of µ along the path tv
for small t:

µ(tṽ) = µ(0) + td0µ(ṽ) + t2

2
d2

dt2

∣∣∣∣
t=0

µ(tṽ) +O(t3). (A.3)

By our hypothesis, µ(0) = 0. Moreover, the differential d0µ(v) vanishes, since µ is a moment
map and the origin is a fixed point of the K-action, so

µ(tṽ) = t2

2 ν(ṽ) +O(t3). (A.4)

The GIT polystability of v implies that, by the Hilbert–Mumford criterion [24, Theorem 12.2]
the weight of the action on H̃1 of the one-parameter subgroup of K defined by ξ

wν = −⟨ν(ṽ), ξ⟩
is nonpositive. Since ν is the leading order term of µ, then stability in fact implies that

⟨µ(ṽ), ξ⟩ ≤ 0.
Therefore, from Proposition 2.6 we obtain that x∞ ∈ KC · v. Therefore, since v has finite
stabiliser under K, so does x∞, which implies that µ(x∞) = 0. □

Remark A.5. It follows from the proof of Theorem A.3 that the GIT-polystability of x ∈ V
implies K-polystability of the corresponding manifold (Ux,Lx).
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kaehlérinne. Nagoya Mathematical Journal 11 (1957), 145–150. 4

[38] Mumford, D. Stability of projective varieties. L’Enseignement mathematique, Universite de Geneve, 1977.
1

[39] Ortu, A. The analytic moduli space of holomorphic submersions. preprint arXiv:2306.09137 (2023). 2, 19,
20

[40] Ortu, A. The geometry of holomorphic submersions, their deformations and moduli. PhD thesis, SISSA
International School of Advanced Studies, Trieste, 2023. 25

[41] Ortu, A. Optimal symplectic connections and deformations of holomorphic submersions. Advances in Math-
ematics 414 (2023), 108868. 2, 14, 15, 16, 17, 21

[42] Ortu, A., and Sektnan, L. M. Constant scalar curvature Kähler metrics and semistable vector bundles.
arXiv preprint: arXiv:2406.08284 (2024). 2, 12

[43] Phong, D. H., Ross, J., and Sturm, J. Deligne pairings and the Knudsen-Mumford expansion. Journal of
Differential Geometry 78, 3 (2008), 475–496. 11

[44] Ross, J., and Thomas, R. A study of the Hilbert-Mumford criterion for the stability of projective varieties.
Journal of Algebraic Geometry 16, 2 (2007), 201–255. 7

[45] Stoppa, J. K-stability of constant scalar curvature Kähler manifolds. Advances in Mathematics 221(4)
(2009), 1397–1408. 1

[46] Székelyhidi, G. The Kähler-Ricci flow and K-polystability. American Journal of Mathematics 132, 4 (2010),
1077–1090. 1, 2, 7, 10, 25
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